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REGULARITY OF WEAK SOLUTIONS FOR A CLASS OF
INFINTELY
DEGENERATE ELLIPTIC SEMILINEAR EQUATIONS

Y. MORIMOTO & C.-J. XU

1. NOTATIONS AND RESULTS

In this work, we study the C'* regularity of weak solution of Dirichlet
problems for a class of second order semi-linear infinitely degenerate elliptic
equation. Consider a system of vector fields X = (X1,---,X,,) defined on
an open domain Q C R™. In the infinite degenerate case, the following is
called logarithmic regularity estimate,

(1) og Al ullEs < LS IXGuld + i}, vue CR@),
j=1

where A = (€2 + |[D|?)'/2 =< D >. If the system X satisfies the finite
type of Hérmander’s condition then (1.1) holds for any real s > 0 . On the
other hand (1.1) admits the infinite degeneracy of the system X, and the
estimate (1.1) with s > 1 always implies the interior hypoellipticity of the
second order operator Ax = Z;ﬂ:l X7 Xj, where X7 is the formal adjoint of
X (see [7]). Some sufficient conditions for this estimate can be seen in the
Appendix of [10]. The typical example for (1.1) is the system in R? such as
X1 = 04, Xo = Oy, X3 = exp(—|21]|71/%)dy, with s > 0 (see [5, 6, 7]). The
operator Ax for this example degenerates infinitely on I'y = {1 = 0}.

Associated with the system of vector fields X = (X1, -+, X,,), we define
function spaces :

HL(Q) = {u € L2(Q): Xjue LX(Q),j =1, ,m} .

We say that u € H}MOC(Q), if au € H}((ﬁ) for any o € C°(Q). Take
Q cc Q and suppose that 92 is C* and non characteristic for the system
of vector fields X. Here, for a smooth surface I" of (~2, we say that I" is non
characteristic for the system of vector fields X, if for any point ¢ € I" there
exists at least one vector field of X1,--- , X,, which is transversal to I" at
xo. We define H}(’O(Q) = {u € Hx(Q);ulpo = 0}, as in [10], this is also a
Hilbert space, and C§°(?) is dense in H}(’O(Q).
VII-1



We consider the following Dirichlet problem:;
(1.2) Axu+ Xou = F(z,u), in Q
(1.3) uloo = g,

where F € C®(Q x R) and X, a vector fields on €. As for the linear
hypoellipticity, it is known that the estimate (1.1) with s = 1 is not sufficient
for hypoellipticity, but the following weak form of estimates is sufficient :
For any small € > 0, there exists C; > 0 such that

m
(1.4) log Av||7. < &) [ Xvl7z + Cellof7, Vo € CE°(9).

j=1
The estimate (1.1) with s > 1 implies immediately the estimate (1.4) by
interpolation. We have a very simple example which satisfies the estimate
(1.4), but not (1.1) for any s > 1. It is the system in R3 such as X; =
8xn‘X? = axw X3 = exp(—(|x1| ‘log ’xl‘ ‘)_l)axw (See [67 10])

We have now the following nonlinear hypoelliptic results :

Theorem 1.1. Suppose that the system of vector fields X satisfy the log-
arithmic reqularity estimate (1.4), and u € H)lg 10e(8) N L2 (Q) is a weak
solution of equation (1.2). Then u € C*°(Q).

Moreover if 0 is C*° and non characteristic for the system of vector
fields X, and if u € H3 ()N L>(Q) is a weak solution of Dirichlet problem
(1.2)-(1.3) with g € C>®(0N), then u € C*(Q).

Remark :We get also regularity up to the boundary for linear Dirichlet
problem if the function F is linear in (1.2).

We give here an example of equation (1.2) coming from a variational prob-
lem. From (1.1), we have the following logarithmic Sobolev inequality(see

10)),
v 2
o < * \L\||iz>

2s—1

m
< o Yo IXjvlide + vl

j=1

a5 [l

for all v € H)l(,o(Q)' Suppose that 1 < k < 2(s—1), take A = (a1,--- ,ax) €
R*, and consider the following variational problems :

m k
1.6) Iy = inf Xv|2, — -/21 )7L
(1:6) I in (Q){;n o3 g [l (tog(e + %))’}

o]l L2 =1, vEH

We say that the system of vector fields X = (Xy,---,X,,) satisfies the
“non trapping condition”, if the system of vector fields X satisfies the
finite type of Hérmander’s condition on Q except for I' = Uje s I}, a union of
smooth surfaces I'; in ﬁ, provided that I" is non characteristic for X. Here we
say that the union I" = U;c s I'; of smooth surfaces in Q is non characteristic
for X, if for any point xy € I there exists at least one vector field of

Xi,---, X, which transverses I'; at xq for all j € Jo = {k € J;20 € I} }.
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The example with infinite degeneracy on the union I" = U; I'; is the system
in R? such as X1 = 0,,, Xo = exp(—(2? siDQ(%))*l/Qs)am, and we see that
if I = {x; = %},j € Z\ {0},Iy = {z1 = 0}, then X, is transversal to all
I'j,j € Z and X5 vanishes infinitely on I' = Ujez 1.

The non trapping condition and Bony’s maximal principle implies imme-
diately the following first Poincaré inequality :

(L.7) [ol320) < Co Y IXj0l3a0y Vo € C(@).
j=1

We have

Theorem 1.2. Suppose that OS2 is C*° and non characteristic for the system
of vector fields X. Assume that the system of vector fields X wverifies the
estimate (1.1) for s > 3/2 and satisfies the non trapping condition. Then I 4
is an attained minimum in H}QO(Q), and the minimizer belongs to C* ().

In fact, by exactly the same calculus as in [10], the inequality (1.5) and
(1.7) give the existence of minimizer u € H)l(,o(Q) for the variational prob-
lems (1.6), and the minimizer is a bounded non trivial positive weak solution
of the following Fuler-Lagrange equation;

(1.8) Axu= F(u), u’ag =0,
with nonlinear term
k . .3
_ owi , J U o1
F(t) = jz:;aj (t(log(e +%)) + P (log(e +t%)) ) + byt € C*®°(R),

where by is a constant depending on the minimizer u. See [11] for the detail.

2. LITTLEWOOD-PALEY THEORY FOR LOGARITHMIC SOBOLEV SPACES
Let £ > 0, and define the following logarithmic Sobolev’s space :
1 /PN
H/S(RY) = {u € L*(R"); (log(€)) u(¢) € L*(R™)},

where (€) = (€2 + |£]%)'/2. We study now the Littlewood-Paley decomposi-
tion for this function space as in [1, 13].

Let Cy = {f e R"e < <§> < 63},Ck = ekCo, keNC_ | = {f € R"; <£> <
e?}, there exist 1 € C§°(]0,€2[), p € C5°(Je, €?]) such that

D) + ) (e (&) =1, VEER™
5=0

For f € L*(R™), we set

A—lf = ¢(A)f7 Ajf = (p(e_jA)f7 J e N.
Then f =3 A;f in L?*(R"), and we have the following characterization for

function space H éog (R™).
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Lemma 2.1. For ¢ > 0, we have that
1) ifue Héog(R"), then
180l ey < €53~ e Ml <l o gy
2) if u € L*(R"™), and
1A ullp2mny < ¢~ {e} € &,
then u € Héog(R”), and for any S > 1
S| (1o A) a2 gy < Crl?ul2agny + CES e},
with C1,Cy independent of S, ¢ and u.

Proof: 1) Forue Héog(R"), we have
I8sul = [ ote (e aede <57 [ togle)ete ) late e
We set
;= / (log (€)™ (e (&) (&)[Pdg.
C

J

Then the fact (&) + Y72, w(e™7(£))* < 1 implies that

S < / log(€) 3" (e (6)?a(e)de < el o gy

Jj=—1 Jj=—1
2) For S > 0, we have

S0 M ul2: < 3 % (SG+3)* / (eI (€))2a(e) Pde

S(j+3)<e

+ 3 > (SG 3 A ul7
S(5+3)>¢

< 3ullZ: +38% Y (+3)"5

S(j+3)>¢
< 30 |ul|7, + 357 (1 43/5)*50 2
J
< 30%[ull72 + 3(e°2°)% 5% {e; 7.
As in the classical case, for the second part in the preceding lemma, we

have more general results

Lemma 2.2. Suppose that {uy, }ren s a sequence of L?(R™), with Supp iy, C
B(0, Ke*) and for £ > 1/2,

HukHL2 rey < ik g’ {Ck} e 2
(R™)
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Then w ="y, uj € Héo_gl/Q(]R”) and for any S > 1,

21 |(log AY2ulZa gy < Co(0=1/2)% ][22 gy +C5 S22 20—1) | {ei } 2,
with C1,Cy independent of S, ¢ and u.
Remark : We have a loss of 1/2 for the index because of the logarithmic

sum.

Proof :  Since ¢ > 1/2, we have that u = ), ug converges in L*(R"),
in fact,

Jullze < 37 el < 37 ek ™ < [ewhlen (3 k2
k k .

We suppose now S = 1, since the general case of S is similar as lemma 2.1.
We set

(o.¢] o.¢] o¢]
w= ) A=) =)L) A
j=— j=— j=—1 k
Then
2 |12 ]2
lolfor gy < 20 30 Agul o2 30 Agules
+3<0—1/2 J+3>0-1/2
< -1 Ml vz 3D G4 Al

JH3>0—-1/2

On the other hand, there exists N7 > 0 (depending only on K) such that
for any j > k + N1, Cj(B(0, KeF) = 0, then Aju, = 0. We have v; =
Ekzj—Nl Ajuy, and

1Aul2, = /| o o AupPde< | Y K > /ijukﬁdx

k>j—N1 k>j—N1 k>j—N1
< (2-1)G - N)T ST A w7
k>j—N1

Set now E? =D k>i-N, k2| Ajug||2 5, we have
~ 14
D28 < DR ulf <37k
j k k
Finally, for j +3 > ¢ —1/2,

. 201 . 2(j+3)
J+3> <J+3> 2(N1+3) 2(N1+3)
: < (- < 2NN 4 42N < @,
J—M J—M

We have proved the lemma.
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Lemma 2.3. Suppose that {uy} is a sequence in C*°(R"™) and for £ > 1/2

there exists a function v € Héog(R”) satisfying the following : For any
a € N", there exist B > 0 such that

Dl 2 (ny < Blaj€1 Akv]| 12 @n).

Then v =7 ,u, € Hé‘igl/Q(R”) and for any S > 1,

S* ulpoe gy < Cs (€= 1/2)2 0l + 527120 = 1) o]

; )
lo log
Hé_l/Q(]R") H) 8(Rn) )

with Cs depending only on By, B(s)42 and C1,Cy the constants in lemmas
2.1 and 2.2.

Proof: Asinthe lemma 2.2, we have u =), uj € L?. We decompose,
wp = up, +up = Ple P A ) up + (1 — (e FTIA) ).
Then u! = Eu}g satisfies the hypothesis of lemma 2.2, we have for S > 1,

S gy < LD B+ CE B (D)0l

(R™)"
We study now u? = 3" u?, with the conditions
Suppuj C {€ € R (&) = ¢}, [ D*jll 1> < Bac™l| Apol] 2.

For k > p+3,C,N{€ € R™;(£) > e*} = (), we have A u? = > k<pt2 Apuz.
Then N

IAp2]52 < [ D e ) [ DD e Auil

k<p+2 k<p+2
< 270FD N T AL U7 < 2t Y e (D) (log A) TP A7
k<p+2 k<p+2
Set now ¢ = D k<pra e~2k||(D)(log A)Eil/QAPUzH%Q. We have
oo
Yo G <Y e D) log M) Pu 7.
p=—1 k

By lemma 2.1, we have
S* ) (log AY T2 (W) 172 < CLE = 1/2)* M ulFz + CFS* M {G -

We study now ||{¢,}||,2. For simplicity of the notation, we replace £ —1/2
by ¢ in what follows,

(D) (log A) ui |72 = /(€>_2([S}+1)(€>2[S}+4(10g<§>)%(1—¢(€_k_1(€>))2Wk(§)\2d§,
and if ([S]+ 1)(k +2) > ¢,

(€)~25D) (log €)) (1—p(e™H1(€)))? < e ISV (kg 2)2 (1 (™41 (€))%
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if ([S]+1)(k +2) < £,

(620511 (g €))% (1p (e 1(£)))? < e~ 2(SHDG+2) <

Consequently

Sz s ¥ e e (L) s

p=—1 ([S]+1) (k+2) <

) ) o 2
t Y, e e <1 + %> 2Nkl s9425
(S]+1) (k+2)>¢

where H!S1H2 is classical Sobolev space on R”. From the hypothesis of
lemma,

k([S1+2)

[kl pisi+2 < Bigyi2e Akl L2,

we have
(oo}

—20 p2¢ 2 2
Z > < Blspa(ST Mol Ee + Iolles gy

We have proved the lemma with the constant C's depending on By, B[S]+2
and Cl, CQ

We study now the non-linear composition for the function of space HY o 1 /2 (R™).

We have the following results.

Theorem 2.1. Suppose that F € C*(R), F(0) =0, andu € Héog(R”) N L= (R")

a real function for £ > 1/2. Then F(u) € Héogl/Q(}R") ) L>°(R™) and for any
S>1

_ 1 20-1 _
201 2 20—1 2
SNy, ey < O (€= 5" Mullagany + 57128 = Dl )

with Cs depending only on Supjy <y, \FO@)] and ||ull}w forj=0,1,---,[S]+
2.

Remark : This theorem is still true for the vector value function v =
(U1, -+ ,um) and F(ty,--- ,t,,) € C°(R™).

Proof : We have firstly
IF()lze = IF () = POz < (supjgpug, e ) F/ O]l 2.

We denote, for k > 1, Spu = Z]— L Aju, then for u € HP5(R™) () L=(R™),
we have F'(u) = limy_, 4o F'(Sku) in LQ(R”), so that

( Slu —I-Z Sku Sk 1u ka
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with f; = F(Sju) and for k > 1

1
fr = / F’(Sk,lu + tAku)thku.
0

Since for any o € N,
ID*(Sk—ruttAgu)|[ e < Cloe™uflpoe, [[D*Agul 2 < e® Al 12,
the Faa-di-Bruno formula implies that

1D fill > < Bioge | Agul]

with B, depending only on Supj<jy||,« |FO(#)] and ||ull’ « for j = 0,1, -, o]+
2

Then ), fi satisfies the hypothesis of lemma 2.3, and so we have proved
the theorem.

To study the regularity up to the boundary for nonlinear problems, we
introduce the following tangential logarithmic Sobolev spaces (see [15]) : For
£ >0, we set

Hy(R") = {u € L[®"); (log{(¢',0))) a(S) € L*(R™)},
and
Hyp(RY) = {u € L*(RL); (log((¢',0))) Frru(¢,x) € LA(RY)},
where £ = (¢,&,) € R" x R,R? = {(2/,z,);2' € R"™!, 2, > 0}. We have
Hy§ (R |y = Hyf(RY).
We use now the tangential Littlewood-Paley decomposition :
AL f =N f, Ajf = (e ?A)f, jEN,
where F(o(A)f) = ¢({((¢,0)))f, and the function spaces Hé?ég(Rfﬁ) is char-
acterized by
Zj%HA;‘u”%?(Ri) < +o0.

We have the similar results as lemmas 2.1-2.3 and theorem 2.1 for the tan-
gential function spaces.

3. NONLINEAR HYPOELLIPTICITY

Take o, € C§°(2) with o CC 8. By using the theorem 2.1 and its

remark, we have the following estimate : Suppose that fu € Héog(R”) N
L*>(R"™) for some ¢ > 1/2, then for any S > 1, we have
(3.1)

1(1og AS) 2 (@F (2, )22 < A% (Y Bull22+(20—1)[| (log AS) (Bu)[|22),

where Ag depends on S, [[ulLe and [|e(@)F(2,t) || crs1+2 (x|
but not on ¢.

—[lwll oo, llullLec])
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By interpolation, the estimate (1.4) implies that : For any small ¢ > 0,
any N > 0, there exists C; y > 0 such that

m
(3.2) log Avll72 < &> I Xjull72 + Conllvlf-n, Vo€ CF(Q),
j=1

where H™ is classical Sobolev space. For small § > 0, we set Ag = (1 —
SA)~1, then this is a uniformly bounded family of operators on H™(R"™)
for any m € R, and As(au) € H*(R") if u € L _(€2). We prove now the
following proposition.

Proposition 3.1. Suppose that the system of vector fields X satisfies the
logarithmic regularity estimate (1.4), and u € H ,, (Q) N L () is a weak

solution of equation (1.2). Then for any o € C3°(Q) and any £ € N, S > 1,
we have

(3.3) 1 (log AS) As(au) p2@ny < (Mof)€™s Rs,

where My depends only on Supp «, mg depends only on S, Rg depends on
As of (3.1) and ||lu|p2(q). Furthermore the constant My, ms and Rg are
independent of small § > 0 and ¢ € N.

Proof of first part of theorem 1.1 : By using the estimate (3.3) with
S = 4eMj, we have

I(D)*As(au)|r2 < ZH(10g1\2)€/\6(04u)”L2(f!)_1
{=0
00 l
< S (log A Ag(aw) 2 () (e
> (108 4%) A (3)

(e%e] 1 /
< Rs) <§> 0"s + Jlaul| 2 < oo,
/=1

where we have used the estimate ¢¢ < ef¢!. Since Rg,mg independent of
§, we have proved au € H?(R"). Now As(au) € H*, the similar calculus
as above give that au € H*(R") if we take S = 2 x 4eMj in (3.3). By
recurrence we get that au € H™(R") for any m € N. It follows from
the Sobolev embedding theorem that au € C*°(R"). Since a € C§°(12) is
arbitrary, we have proved u € C*°(Q).

Proof of proposition 3.1 For ¢ > 1 fixed, we choose the functions of
C3 () as in [6, 7],

a=oayp CCoy_1CC---CCoa CC Oé():ﬂ,
such that

(3.4) 1D )] < CA WA e N™.
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For the proof of proposition 3.1, we prove the following estimate : for any
1<j<¥ and any j < k < ¢, we have

(3.5) | (log A%) Ag(cu)|| > < (Mol)?0™s Ry

with the constant as in proposition 3.1.

We need also the following two classicals results about pseudo-differential
calculus (see [4]).

First result is about the pseudo-differential operators as a regularlizer.

Proposition 3.2. For any m,m’ € N, we have
(o —1) (log A%)’ As(ap1u)||Fm < O s (U2 HETID2 5y 5
with Cg . py independent of £,j and §, and
llevk (log A As (1) |3 < Cs(GP5 )2 Bul 7.
with Cg independent of £,j and J.
For the commutators, we have
Proposition 3.3. Let X be vector fields, 1 < j <, j <k < /¥, we have
10X, ax (log A%) Aseug 1] egul| 72 < Cs (C[[ullf} 4, s+(GD> T2 Bul72),
and
11X, [X, ax (log A%) Asapallakul|F2 < Cs (C[[ul][} s+ (GO Bul72),
with Cg independent of 7, k,¢ and §, where
. 2
]! o
Mallfrs= > (ﬁ) | (log A%)" ™ Mgl 2.
0<j'<min{j,5+2} J=I)

We prove now (3.5) by induction on j.
1) For j=1, 1<k </{—1, take ap1AsaiAs(agpr1u) € HL(Q) as test
function in (1.2),

Z/Q(Xpu)Xp(akHA,;aiAg(ak+1u))da:: /Qak—l—l (F(z,u)—Xou) (AsajAs(ag1u))da.
p=1

Then it follows from Cauchy-Schwarz inequality and (3.4) that

m

Y IXparts(ariiw)7 < Cillagsiulfz + Col?llaguls,

p=1
where C7 and Cy are the constants in (3.1) and (3.4). On the other hand,
(1.4) gives that

| log Ao As(ap1u)) |72 < el| X (apAg(apy1w))] 72 + Cellowsiull7.
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We have for any S > 1,
[1og(A%)As(cprw)7 S%e)| X (arAs(ap1w))l|72 + S*Cellagaul 7.
[log(A%)(ax — 1) Ag(apyru) 7
526(01||ak+1u||%2 + C2€2Haku||%z)

+ S2C:agsrul7z + | log(A%) (ak — D)As(cvkr1w)]|7e

IN + IA

For the last term of right hand side, the proposition 3.2 gives
log(A®)(ag, = DAs(ag1u)|[72 < Csl*5H0 ) Gul2..
| L L

We have proved (3.5) for j = 1 if we choose ¢ > 0 small such that £S? < 1
and

Mg > C1+Cy+C3+1, Rg > (SCys+Cs)||Bullfz, 2ms > 10(S +n+2).

2) Suppose now that there exists a j < ¢ — 1 such that (3.5) is true for
any p < j. We shall prove (3.5) for j + 1. Firstly, take § — 0, we have for
any p<jandp <k </{

(3.6) |(log A%)P(agu)|| 2 < (Mol)PE™s Ry,

and

(3.7)

i 2 o .

2 <(j . j/)') 1(log A%)" ™ Ascvg—jrul|72 < Cs(Mol) ¥ 2™ RS,
0<j'<min{3,542} ’
For j <k </f—1, set

v = app1As(log A% a2 (log A%) As(ouiqu),

then v € H}(Q), using v as test function in (1.2),
m
/Q (ZX;Xpu)vdx = /Q (F(z,u) — Xou)vdz.
p=1

By using integration by part, Cauchy-Schwarz inequality, induction hypoth-
esis, Proposition 3.2 and Proposition 3.3, we have that, if mg > 5(S+n+2),

m

, 1 .
> I Xpak(log A%V As(arqru)ll72 < §||10g(AS)Oék(10gAS)jAa(Oék+1u)||%2
p=1

+Cg(Mol)+2¢>ms RZ,.
Using (3.2) with N = S and the proposition 3.2, we get
1 og A g (log A®) Ag(cug1u)|72
< e > 1 Xpax(log ASY Ag(ars1u) 122 + Ce sllan(log ASY As(ansnw) % s.

p=1
VII-11



Choose £ > 0 small enough such that ¢S? < 1, eS?Cys < 1/4, we get (3.5)
if we take

R% > 2(25°C. 541 + 3C5)||Bul|2.

Regularity up to the boundary

As in the classical case, we transform firstly the non homogeneous Dirich-
let problem (1.2)-(1.3) into a homogeneous Dirichlet problem, i. e. we
suppose that ¢ = 0 in (1.3). Suppose now that u € L*(2) N H}(’O(Q) is a
weak solution of Dirichlet problem (1.2))—(1.3), we have already the interior
regularity u € C*°(Q), and so we want to prove here that u € C*(Q), that
is C'*° regularity up to the boundary.

Since 91 is C* and non characteristic for the system of vector fields X,
near a point of 9f), we use the standard process of localization and a C'*°
change of variable to flatten out the boundary (we keep the same notation
for the solution u), then the weak solution wu satisfies the following equation
(see [2, 3, 15]) :

(3.8)
02 (au) — ST Y Yi(ow) = Ou, (aoBu) + Yo(Bu) + F(x, Bu), in RY

Bu(x’,0) =0, for o' ¢ R*~!

where «, 3,a9 € Cg° (M), a CC 3 with Supp 8 a neighborhood of 0 in R”,
and Y, = ZZ;} ajr(2’,2,)0z,,7 = 0,1,--- ,m — 1 are the tangential vector
fields. We have that the system of vector fields Y = (0,,,Y1, -+ ,Yn—1)
satisfies still the logarithmic regularity estimates (1.1) or (1.4) on a neigh-
borhood O C R"™ of 0. Remark that we have fu € L*(R’) N H;O(R?}r).

Let A = (e 4 |D'[*)Y/? with D' = (D, , Dy, _,). On account of (1.4),
for any small € > 0, there exists C; > 0 such that

(3.9)
m—1
G0 Aoz gy < (D 150l Faan) + 102,020 ) + Cellol 2y
j=1

for all v € C§°(O NRY). By density, this is true for v € H;lzyo((’) NRY).
Firstly for the nonlinear term we have the similar result as in (3.1) :

Suppose that pu € H(lfég(R?r) N L*(R?Y) for some ¢ > 1/2, then for any

S > 1, we have

(3.10)

{—1/2 = _
I(log AS) Y (aF (2, fu)) [f2 @y, < AF(CHNBulfegey)
L
+ (20-1)[(logA") (Bl @)

where Ag depends on S, ||ul| Lo and [la(z) F (2, )l cisiea (@5 x [ uf oo 1l o)

, but not on /4.
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If the equation (1.2) is linear, we use the following estimate : If f €
C>(R7), then for any ¢ € N, any S > 1, and a € C§°(R?),

(g A™) (@ f) | L2y < LA™ (f) |2y

For small § > 0, we set Af = (1 — dA,)~ !, with Ay = E;‘;ll Ogj, this
is a tangential regularization operators. As for the proposition 3.1, we have
that for any ¢ € N, and any S > 1,

(3.11) | (log A"%) Aj(au)| 2y ) < (Mob)“6™s Rs,

with the same constants as in (3.3). By using the estimates (3.9) and (3.10),
the proof of this estimations is exactly as that of proposition 3.1, for example
in the step 2 of proof for the proposition 3.1, we take here

v = a1 (log Ao (log A"*) A (axs1u),

as test function in (3.8). In fact, we have v,d,,v,A'v € L*(R%) and
v(2',0) = 0, then v € H} (R™). Moreover, a1 A%(log A’S)jai(log A’S)jAgakH
is a tangential pseudo-differential operators, thus all pseudo-differential cal-
culus in the proof is tangential, and the integration by part for the variable
xy take only once.

Now the estimate (3.11) implies that A" (au) € L*(R") for any m € N
and any a € C§°(O NR7Y), and we have already 95, (au) € L*(R"), so that
we have au € H'(R"). For m > 2, we have, by using the equation (3.8),

m—1
92 (au) = Z Y;'Yj(au) + Oy, (a0 fBu) + Yo(Bu) + F(z,Bu) € L*(R?),
j=1

then, we have au € H*(R"). By induction we prove that au € H™(R") for
any m € N. We have proved finally au € C"’O(M) by Sobolev embedding
theorem. Take a = 1 near 0 € R", we have proved u € C®(O N R%) for o
a neighborhood of 0 in R™. So that we get the C*° regularity of solution up
to the boundary.
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