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REGULARITY OF WEAK SOLUTIONS FOR A CLASS OF

INFINTELY

DEGENERATE ELLIPTIC SEMILINEAR EQUATIONS

Y. MORIMOTO & C.-J. XU

1. Notations and results

In this work, we study the C∞ regularity of weak solution of Dirichlet
problems for a class of second order semi-linear infinitely degenerate elliptic
equation. Consider a system of vector fields X = (X1, · · · , Xm) defined on

an open domain Ω̃ ⊂ R
n. In the infinite degenerate case, the following is

called logarithmic regularity estimate,

(1.1) ‖(log Λ)su‖2
L2 ≤ C

{ m∑

j=1

‖Xju‖
2
L2 + ‖u‖2

L2

}
, ∀u ∈ C∞

0 (Ω̃),

where Λ = (e2 + |D|2)1/2 =< D >. If the system X satisfies the finite
type of Hörmander’s condition then (1.1) holds for any real s > 0 . On the
other hand (1.1) admits the infinite degeneracy of the system X, and the
estimate (1.1) with s > 1 always implies the interior hypoellipticity of the
second order operator 4X =

∑m
j=1X

∗
jXj , where X∗

j is the formal adjoint of

Xj (see [7]). Some sufficient conditions for this estimate can be seen in the
Appendix of [10]. The typical example for (1.1) is the system in R

3 such as

X1 = ∂x1 , X2 = ∂x2 , X3 = exp(−|x1|
−1/s)∂x3 with s > 0 (see [5, 6, 7]). The

operator 4X for this example degenerates infinitely on Γ0 = {x1 = 0}.

Associated with the system of vector fields X = (X1, · · · , Xm), we define
function spaces :

H1
X(Ω̃) =

{
u ∈ L2(Ω̃);Xju ∈ L2(Ω̃), j = 1, · · · ,m

}
.

We say that u ∈ H1
X, loc(Ω̃), if αu ∈ H1

X(Ω̃) for any α ∈ C∞
0 (Ω̃). Take

Ω ⊂⊂ Ω̃ and suppose that ∂Ω is C∞ and non characteristic for the system

of vector fields X. Here, for a smooth surface Γ of Ω̃, we say that Γ is non
characteristic for the system of vector fields X, if for any point x0 ∈ Γ there
exists at least one vector field of X1, · · · , Xm which is transversal to Γ at
x0. We define H1

X,0(Ω) =
{
u ∈ H1

X(Ω);u|∂Ω = 0
}
, as in [10], this is also a

Hilbert space, and C∞
0 (Ω) is dense in H1

X,0(Ω).
VII–1



We consider the following Dirichlet problem;

4Xu+X0u = F (x, u), in Ω(1.2)

u|∂Ω = g,(1.3)

where F ∈ C∞(Ω̄ × R) and X0 a vector fields on Ω̃. As for the linear
hypoellipticity, it is known that the estimate (1.1) with s = 1 is not sufficient
for hypoellipticity, but the following weak form of estimates is sufficient :
For any small ε > 0, there exists Cε > 0 such that

(1.4) ‖ log Λ v‖2
L2 ≤ ε

m∑

j=1

‖Xjv‖
2
L2 + Cε‖v‖

2
L2 , ∀v ∈ C∞

0 (Ω̃).

The estimate (1.1) with s > 1 implies immediately the estimate (1.4) by
interpolation. We have a very simple example which satisfies the estimate
(1.4), but not (1.1) for any s > 1. It is the system in R

3 such as X1 =
∂x1 , X2 = ∂x2 , X3 = exp(−(|x1| | log |x1| |)

−1)∂x3 , (see [6, 10]).
We have now the following nonlinear hypoelliptic results :

Theorem 1.1. Suppose that the system of vector fields X satisfy the log-
arithmic regularity estimate (1.4), and u ∈ H1

X, loc(Ω) ∩ L∞
loc

(Ω) is a weak

solution of equation (1.2). Then u ∈ C∞(Ω).
Moreover if ∂Ω is C∞ and non characteristic for the system of vector

fields X, and if u ∈ H1
X(Ω)∩L∞(Ω) is a weak solution of Dirichlet problem

(1.2)–(1.3) with g ∈ C∞(∂Ω), then u ∈ C∞(Ω̄).

Remark :We get also regularity up to the boundary for linear Dirichlet
problem if the function F is linear in (1.2).

We give here an example of equation (1.2) coming from a variational prob-
lem. From (1.1), we have the following logarithmic Sobolev inequality(see
[10]),

(1.5)

∫

Ω
|v|2

∣∣∣∣log
(
e+

|v|2

‖v‖2
L2

)∣∣∣∣
2s−1

≤ C0

{ m∑

j=1

‖Xjv‖
2
L2 + ‖v‖2

L2

}
,

for all v ∈ H1
X,0(Ω). Suppose that 1 ≤ k < 2(s− 1), take A = (a1, · · · , ak) ∈

R
k, and consider the following variational problems :

(1.6) IA = inf
‖v‖L2=1, v∈H1

X,0(Ω)

{ m∑

j=1

‖Xjv‖
2
L2 −

k∑

j=1

aj

∫

Ω
|v|2

(
log(e+ v2)

)j
}
.

We say that the system of vector fields X = (X1, · · · , Xm) satisfies the
“non trapping condition”, if the system of vector fields X satisfies the

finite type of Hörmander’s condition on Ω̃ except for Γ = ∪j∈J Γj, a union of

smooth surfaces Γj in Ω̃, provided that Γ is non characteristic forX. Here we

say that the union Γ = ∪j∈J Γj of smooth surfaces in Ω̃ is non characteristic
for X, if for any point x0 ∈ Γ there exists at least one vector field of
X1, · · · , Xm which transverses Γj at x0 for all j ∈ J0 = {k ∈ J ;x0 ∈ Γk}.
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The example with infinite degeneracy on the union Γ = ∪j Γj is the system

in R
2 such as X1 = ∂x1 , X2 = exp(−(x2

1 sin2( π
x1

))−1/2s)∂x2 , and we see that

if Γj = {x1 = 1
j }, j ∈ Z \ {0}, Γ0 = {x1 = 0}, then X1 is transversal to all

Γj, j ∈ Z and X2 vanishes infinitely on Γ = ∪j∈ZΓj.
The non trapping condition and Bony’s maximal principle implies imme-

diately the following first Poincaré inequality :

(1.7) ‖v‖2
L2(Ω) ≤ C0

m∑

j=1

‖Xjv‖
2
L2(Ω), ∀v ∈ C∞

0 (Ω̃).

We have

Theorem 1.2. Suppose that ∂Ω is C∞ and non characteristic for the system
of vector fields X. Assume that the system of vector fields X verifies the
estimate (1.1) for s > 3/2 and satisfies the non trapping condition. Then IA

is an attained minimum in H1
X,0(Ω), and the minimizer belongs to C∞(Ω̄).

In fact, by exactly the same calculus as in [10], the inequality (1.5) and
(1.7) give the existence of minimizer u ∈ H1

X,0(Ω) for the variational prob-

lems (1.6), and the minimizer is a bounded non trivial positive weak solution
of the following Euler-Lagrange equation;

(1.8) 4Xu = F (u), u|∂Ω = 0,

with nonlinear term

F (t) =

k∑

j=1

aj

(
t
(
log(e+ t2)

)j
+
j

2

t3

e+ t2
(
log(e+ t2)

)j−1
)

+ b0t ∈ C∞(R),

where b0 is a constant depending on the minimizer u. See [11] for the detail.

2. Littlewood-Paley theory for logarithmic Sobolev spaces

Let ` > 0, and define the following logarithmic Sobolev’s space :

H log
` (Rn) = {u ∈ L2(Rn);

(
log〈ξ〉

)`
û(ξ) ∈ L2(Rn)},

where 〈ξ〉 = (e2 + |ξ|2)1/2. We study now the Littlewood-Paley decomposi-
tion for this function space as in [1, 13].

Let C0 = {ξ ∈ R
n; e < 〈ξ〉 < e3}, Ck = ekC0, k ∈ N, C−1 = {ξ ∈ R

n; 〈ξ〉 <
e2}, there exist ψ ∈ C∞

0 (]0, e2[), ϕ ∈ C∞
0 (]e, e3[) such that

ψ(〈ξ〉) +

∞∑

j=0

ϕ(e−j〈ξ〉) = 1, ∀ξ ∈ R
n.

For f ∈ L2(Rn), we set

∆−1f = ψ(Λ)f, ∆jf = ϕ(e−jΛ)f, j ∈ N.

Then f =
∑

∆jf in L2(Rn), and we have the following characterization for

function space H log
` (Rn).
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Lemma 2.1. For ` > 0, we have that

1) if u ∈ H log
` (Rn), then

‖∆ju‖L2(Rn) ≤ cjj
−`, ‖{cj}‖`2 ≤ ‖u‖

Hlog
` (Rn)

.

2) if u ∈ L2(Rn), and

‖∆ju‖L2(Rn) ≤ cjj
−`, {cj} ∈ `2,

then u ∈ H log
` (Rn), and for any S ≥ 1

S2`‖(log Λ)`u‖2
L2(Rn) ≤ C1`

2`‖u‖2
L2(Rn) + CS

2 S
2`‖{cj}‖

2
`2 ,

with C1, C2 independent of S, ` and u.

Proof : 1) For u ∈ H log
` (Rn), we have

‖∆ju‖
2
L2 =

∫
ϕ(e−j〈ξ〉)2|û(ξ)|2dξ ≤ j−2`

∫

Cj

(log〈ξ〉)2`ϕ(e−j〈ξ〉)2|û(ξ)|2dξ.

We set

c2j =

∫

Cj

(log〈ξ〉)2`ϕ(e−j〈ξ〉)2|û(ξ)|2dξ.

Then the fact ψ2(ξ) +
∑∞

j=0 ϕ(e−j〈ξ〉)2 ≤ 1 implies that

∞∑

j=−1

c2j ≤

∫

Rn

(log〈ξ〉)2`
∞∑

j=−1

ϕ(e−j〈ξ〉)2|û(ξ)|2dξ ≤ ‖u‖2
Hlog

` (Rn)
.

2) For S > 0, we have

S2`‖(log Λ)`u‖2
L2 ≤ 3

∑

S(j+3)≤`

(S(j + 3))2`

∫
ϕ(e−j〈ξ〉)2|û(ξ)|2dξ

+ 3
∑

S(j+3)>`

(S(j + 3))2`‖∆ju‖
2
L2

≤ 3`2`‖u‖2
L2 + 3S2`

∑

S(j+3)>`

(j + 3)2`j−2`c2j

≤ 3`2`‖u‖2
L2 + 3S2`

∑

j

(1 + 3/j)2S(j+3)c2j

≤ 3`2`‖u‖2
L2 + 3(e626)SS2`‖{cj}‖

2
L2 .

As in the classical case, for the second part in the preceding lemma, we
have more general results

Lemma 2.2. Suppose that {uk}k∈N is a sequence of L2(Rn), with Supp ûk ⊂
B(0,Kek) and for ` > 1/2,

‖uk‖L2(Rn) ≤ ckk
−`, {ck} ∈ `2.
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Then u =
∑

k uk ∈ H log
`−1/2(R

n) and for any S ≥ 1,

S2`−1‖(log Λ)`−1/2u‖2
L2(Rn) ≤ C1(`−1/2)2`−1‖u‖2

L2(Rn)+C
S
2 S

2`−1(2`−1)‖{ck}‖
2
`2 ,

with C1, C2 independent of S, ` and u.

Remark : We have a loss of 1/2 for the index because of the logarithmic
sum.

Proof : Since ` > 1/2, we have that u =
∑

k uk converges in L2(Rn),
in fact,

‖u‖L2 ≤
∑

k

‖uk‖L2 ≤
∑

k

ckk
−` ≤ ‖{ck}‖`2

(∑

k

k−2`
)1/2

.

We suppose now S = 1, since the general case of S is similar as lemma 2.1.
We set

u =

∞∑

j=−1

∆ju =

∞∑

j=−1

vj =

∞∑

j=−1

∑

k

∆juk.

Then

‖u‖2
Hlog

`−1/2
(Rn)

≤ 2‖
∑

j+3≤`−1/2

∆ju‖
2
Hlog

`−1/2
(Rn)

+ 2‖
∑

j+3>`−1/2

∆ju‖
2
Hlog

`−1/2
(Rn)

≤ 2(`− 1/2)2`−1‖u‖2
L2 + 2

∑

j+3>`−1/2

(j + 3)2`−1‖∆ju‖
2
L2 .

On the other hand, there exists N1 > 0 (depending only on K) such that
for any j > k + N1, Cj

⋂
B(0,Kek) = ∅, then ∆juk = 0. We have vj =∑

k≥j−N1
∆juk, and

‖∆ju‖
2
L2 =

∫
|

∑

k≥j−N1

∆juk|
2dx ≤


 ∑

k≥j−N1

k−2`





 ∑

k≥j−N1

∫
k2`|∆juk|

2dx




≤ (2`− 1)(j −N1)
−2`+1

∑

k≥j−N1

k2`‖∆juk‖
2
L2 .

Set now c̃2j =
∑

k≥j−N1
k2`‖∆juk‖

2
L2 , we have

∑

j

c̃2j ≤
∑

k

k2`‖uk‖
2
L2 ≤

∑

k

c2k.

Finally, for j + 3 > `− 1/2,

(
j + 3

j −N1

)2`−1

≤

(
j + 3

j −N1

)2(j+3)

≤ e2(N1+3)(N1 + 4)2(N1+3) ≤ C2.

We have proved the lemma.
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Lemma 2.3. Suppose that {uk} is a sequence in C∞(Rn) and for ` > 1/2

there exists a function v ∈ H log
` (Rn) satisfying the following : For any

α ∈ N
n, there exist B|α| ≥ 0 such that

‖Dαuk‖L2(Rn) ≤ B|α|e
k|α|‖∆kv‖L2(Rn).

Then u =
∑

k uk ∈ H log
`−1/2(R

n) and for any S ≥ 1,

S2`−1‖u‖2
Hlog

`−1/2
(Rn)

≤ CS

(
(`− 1/2)2`−1‖v‖2

L2(Rn) + S2`−1(2`− 1)‖v‖2
Hlog

` (Rn)

)
,

with CS depending only on B0, B[S]+2 and C1, C2 the constants in lemmas
2.1 and 2.2.

Proof : As in the lemma 2.2, we have u =
∑

k uk ∈ L2. We decompose,

uk = u1
k + u2

k = ψ(e−k−1Λ)uk + (1 − ψ(e−k−1Λ))uk.

Then u1 =
∑
u1

k satisfies the hypothesis of lemma 2.2, we have for S ≥ 1,

S2`−1‖u1‖2
Hlog

`−1/2
(Rn)

≤ C1(`−1/2)2`−1B2
0‖v‖

2
L2+C

S
2 B

2
0S

2`−1(2`−1)‖v‖2
Hlog

` (Rn)
.

We study now u2 =
∑
u2

k, with the conditions

Suppu2
k ⊂ {ξ ∈ R

n; 〈ξ〉 ≥ ek}, ‖Dαu2
k‖L2 ≤ Bαe

k|α|‖∆kv‖L2 .

For k ≥ p+ 3, Cp
⋂
{ξ ∈ R

n; 〈ξ〉 ≥ ek} = ∅, we have ∆pu
2 =

∑
k≤p+2 ∆pu

2
k.

Then

‖∆pu
2‖2

L2 ≤




∑

k≤p+2

e2k







∑

k≤p+2

e−2k‖∆pu
2
k‖

2
L2




≤ 2e2(p+2)
∑

k≤p+2

e−2k‖∆pu
2
k‖

2
L2 ≤ 2e4p−2`+1

∑

k≤p+2

e−2k‖〈D〉(log Λ)`−1/2∆pu
2
k‖

2
L2 .

Set now c̃2p =
∑

k≤p+2 e
−2k‖〈D〉(log Λ)`−1/2∆pu

2
k‖

2
L2 . We have

∞∑

p=−1

c̃2p ≤
∑

k

e−2k‖〈D〉(log Λ)`−1/2u2
k‖

2
L2 .

By lemma 2.1, we have

S2`−1‖(log Λ)`−1/2(u2)‖2
L2 ≤ C1(`− 1/2)2`−1‖u‖2

L2 +CS
2 S

2`−1‖{c̃p}‖
2
`2 .

We study now ‖{c̃p}‖`2 . For simplicity of the notation, we replace ` − 1/2
by ` in what follows,

‖〈D〉(log Λ)`u2
k‖

2
L2 =

∫
〈ξ〉−2([S]+1)〈ξ〉2[S]+4(log〈ξ〉)2`(1−ψ(e−k−1〈ξ〉))2|ûk(ξ)|

2dξ,

and if ([S] + 1)(k + 2) ≥ `,

〈ξ〉−2([S]+1)(log〈ξ〉)2`(1−ψ(e−k−1〈ξ〉))2 ≤ e−2([S]+1)(k+2)(k+2)2`(1−ψ(e−k−1〈ξ〉))2;
VII–6



if ([S] + 1)(k + 2) < `,

〈ξ〉−2([S]+1)(log〈ξ〉)2`(1−ψ(e−k−1〈ξ〉))2 ≤ e−2([S]+1)(k+2)

(
`

[S] + 1

)2`

(1−ψ(e−k−1〈ξ〉))2.

Consequently

∞∑

p=−1

c̃2p ≤
∑

([S]+1)(k+2)<`

e−2ke−2([S]+1)(k+2)

(
`

[S] + 1

)2`

‖uk‖
2
H[S]+2

+
∑

([S]+1)(k+2)≥`

e−4([S]+1)e−2k([S]+2)

(
1 +

2

k

)2`

k2`‖uk‖
2
H[S]+2,

where H [S]+2 is classical Sobolev space on R
n. From the hypothesis of

lemma,

‖uk‖H[S]+2 ≤ B[S]+2e
k([S]+2)‖∆kv‖L2 ,

we have
∞∑

p=−1

c̃2p ≤ B2
[S]+2(S

−2``2`‖v‖2
L2 + ‖v‖2

Hlog
`−1/2

(Rn)
).

We have proved the lemma with the constant CS depending on B0, B[S]+2

and C1, C2.

We study now the non-linear composition for the function of spaceH log
`−1/2(R

n).

We have the following results.

Theorem 2.1. Suppose that F ∈ C∞(R), F (0) = 0, and u ∈ H log
` (Rn)

⋂
L∞(Rn)

a real function for ` > 1/2. Then F (u) ∈ H log
`−1/2(R

n)
⋂
L∞(Rn) and for any

S ≥ 1

S2`−1‖F (u)‖2
Hlog

`−1/2
(Rn)

≤ CS

((
`−

1

2

)2`−1
‖u‖2

L2(Rn) + S2`−1(2`− 1)‖u‖2
Hlog

` (Rn)

)
,

with CS depending only on Sup|t|≤‖u‖L∞
|F (j)(t)| and ‖u‖j

L∞ for j = 0, 1, · · · , [S]+
2 .

Remark : This theorem is still true for the vector value function u =
(u1, · · · , um) and F (t1, · · · , tm) ∈ C∞(Rm).

Proof : We have firstly

‖F (u)‖L2 = ‖F (u) − F (0)‖L2 ≤
(
sup|t|≤‖u‖L∞

)
|F ′(t)|‖u‖L2 .

We denote, for k ≥ 1, Sku =
∑k−2

j=−1 ∆ju, then for u ∈ H log
` (Rn)

⋂
L∞(Rn),

we have F (u) = limk→+∞ F (Sku) in L2(Rn), so that

F (u) = F (S1u) +
∞∑

k=2

(F (Sku) − F (Sk−1u)) =
∞∑

k=1

fk
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with f1 = F (S1u) and for k > 1

fk =

∫ 1

0
F ′(Sk−1u+ t∆ku)dt∆ku.

Since for any α ∈ N
n,

‖Dα(Sk−1u+t∆ku)‖L∞ ≤ C|α|e
k|α|‖u‖L∞ , ‖Dα∆ku‖L2 ≤ e(k+3)|α|‖∆ku‖L2 ,

the Faà-di-Bruno formula implies that

‖Dαfk‖L2 ≤ B|α|e
k|α|‖∆ku‖L2

withB|α| depending only on Sup|t|≤‖u‖L∞
|F (j)(t)| and ‖u‖j

L∞ for j = 0, 1, · · · , |α|+
2.

Then
∑

k fk satisfies the hypothesis of lemma 2.3, and so we have proved
the theorem.

To study the regularity up to the boundary for nonlinear problems, we
introduce the following tangential logarithmic Sobolev spaces (see [15]) : For
` > 0, we set

H log
0,` (Rn) = {u ∈ L2(Rn); (log〈(ξ′, 0)〉)`û(ξ) ∈ L2(Rn)},

and

H log
0,` (Rn

+) = {u ∈ L2(Rn
+); (log〈(ξ′, 0)〉)`Fx′u(ξ′, xn) ∈ L2(Rn

+)},

where ξ = (ξ′, ξn) ∈ R
n−1 × R,Rn

+ = {(x′, xn);x′ ∈ R
n−1, xn > 0}. We have

H log
0,` (Rn)|Rn

+
= H log

0,` (Rn
+).

We use now the tangential Littlewood-Paley decomposition :

∆′
−1f = ψ(Λ′)f, ∆′

jf = ϕ(e−jΛ′)f, j ∈ N,

where F(ϕ(Λ′)f) = ϕ(〈(ξ′, 0)〉)f̂ , and the function spaces H log
0,` (Rn

+) is char-

acterized by ∑
j2`‖∆′

ju‖
2
L2(Rn

+) < +∞.

We have the similar results as lemmas 2.1–2.3 and theorem 2.1 for the tan-
gential function spaces.

3. Nonlinear hypoellipticity

Take α, β ∈ C∞
0 (Ω) with α ⊂⊂ β. By using the theorem 2.1 and its

remark, we have the following estimate : Suppose that βu ∈ H log
` (Rn) ∩

L∞(Rn) for some ` > 1/2, then for any S ≥ 1, we have
(3.1)

‖
(
log ΛS

)`−1/2
(αF (x, u))‖2

L2 ≤ A2
S

(
`2`−1‖βu‖2

L2+(2`−1)‖
(
log ΛS

)`
(βu)‖2

L2

)
,

where AS depends on S, ‖u‖L∞ and ‖α(x)F (x, t)‖C[S]+2(Ω×[−‖u‖L∞ ,‖u‖L∞ ]) ,

but not on `.
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By interpolation, the estimate (1.4) implies that : For any small ε > 0,
any N > 0, there exists Cε,N > 0 such that

(3.2) ‖ log Λ v‖2
L2 ≤ ε

m∑

j=1

‖Xjv‖
2
L2 + Cε,N‖v‖2

H−N , ∀v ∈ C∞
0 (Ω̃),

where H−N is classical Sobolev space. For small δ > 0, we set Λδ = (1 −
δ4)−1, then this is a uniformly bounded family of operators on Hm(Rn)
for any m ∈ R, and Λδ(αu) ∈ H2(Rn) if u ∈ L2

loc(Ω). We prove now the
following proposition.

Proposition 3.1. Suppose that the system of vector fields X satisfies the
logarithmic regularity estimate (1.4), and u ∈ H 1

X, loc(Ω)∩L∞
loc

(Ω) is a weak

solution of equation (1.2). Then for any α ∈ C∞
0 (Ω) and any ` ∈ N, S ≥ 1,

we have

(3.3) ‖
(
log ΛS

)`
Λδ(αu)‖L2(Rn) ≤ (M0`)

``mSRS ,

where M0 depends only on Supp α, mS depends only on S, RS depends on
AS of (3.1) and ‖u‖L2(Ω). Furthermore the constant M0,mS and RS are
independent of small δ > 0 and ` ∈ N.

Proof of first part of theorem 1.1 : By using the estimate (3.3) with
S = 4eM0, we have

‖〈D〉2Λδ(αu)‖L2 ≤
∞∑

`=0

‖
(
log Λ2

)`
Λδ(αu)‖L2(`!)−1

≤
∞∑

`=0

‖
(
log ΛS

)`
Λδ(αu)‖L2

(
2

S

)`

(`!)−1

≤ RS

∞∑

`=1

(
1

2

)`

`mS + ‖αu‖L2 < +∞,

where we have used the estimate `` ≤ e``!. Since RS ,mS independent of
δ, we have proved αu ∈ H2(Rn). Now Λδ(αu) ∈ H4, the similar calculus
as above give that αu ∈ H4(Rn) if we take S = 2 × 4eM0 in (3.3). By
recurrence we get that αu ∈ Hm(Rn) for any m ∈ N. It follows from
the Sobolev embedding theorem that αu ∈ C∞(Rn). Since α ∈ C∞

0 (Ω) is
arbitrary, we have proved u ∈ C∞(Ω).

Proof of proposition 3.1 For ` ≥ 1 fixed, we choose the functions of
C∞

0 (Ω) as in [6, 7],

α = α` ⊂⊂ α`−1 ⊂⊂ · · · ⊂⊂ α1 ⊂⊂ α0 = β,

such that

(3.4) ‖Dλαj‖L∞ ≤ Cλ`
|λ|, ∀λ ∈ N

n.
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For the proof of proposition 3.1, we prove the following estimate : for any
1 ≤ j ≤ `, and any j ≤ k ≤ `, we have

(3.5) ‖
(
log ΛS

)j
Λδ(αku)‖L2 ≤ (M0`)

j`mSRS

with the constant as in proposition 3.1.
We need also the following two classicals results about pseudo-differential

calculus (see [4]).
First result is about the pseudo-differential operators as a regularlizer.

Proposition 3.2. For any m,m′ ∈ N, we have

‖(αk−1)
(
log ΛS

)j
Λδ(αk+1u)‖

2
Hm ≤ CS,m,m′(j!`3m+2m′+2S+3n+4)2‖βu‖2

H−m′ ,

with CS,m,m′ independent of `, j and δ, and

‖αk(log ΛS)jΛδ(αk+1u)‖
2
H−S ≤ CS(j!`2S+3n+7)2‖βu‖2

L2 .

with CS independent of `, j and δ.

For the commutators, we have

Proposition 3.3. Let X be vector fields, 1 ≤ j ≤ `, j ≤ k ≤ `, we have

‖[X,αk

(
log ΛS

)j
Λδαk+1]αku‖

2
L2 ≤ CS

(
`2|||u|||2j,k,S+(j!)2`10(S+n+2)‖βu‖2

L2

)
,

and

‖[X, [X,αk

(
log ΛS

)j
Λδαk+1]]αku‖

2
L2 ≤ CS

(
`4|||u|||2j,k,S+(j!)2`10(S+n+2)‖βu‖2

L2

)
,

with CS independent of j, k, ` and δ, where

|||u|||2j,k,S =
∑

0≤j′≤min{j,S+2}

(
j!

(j − j′)!

)2

‖
(
log ΛS

)j−j′
Λδαk−j′u‖

2
L2 .

We prove now (3.5) by induction on j.
1) For j = 1, 1 ≤ k ≤ `− 1, take αk+1Λδα

2
kΛδ(αk+1u) ∈ H1

0 (Ω) as test
function in (1.2),

m∑

p=1

∫

Ω
(Xpu)Xp(αk+1Λδα

2
kΛδ(αk+1u))dx =

∫

Ω
αk+1

(
F (x, u)−X0u

)
(Λδα

2
kΛδ(αk+1u))dx.

Then it follows from Cauchy-Schwarz inequality and (3.4) that

m∑

p=1

‖XpαkΛδ(αk+1u)‖
2
L2 ≤ C1‖αk+1u‖

2
L2 + C2`

2‖αku‖
2
L2 ,

where C1 and C2 are the constants in (3.1) and (3.4). On the other hand,
(1.4) gives that

‖ log Λ(αkΛδ(αk+1u))‖
2
L2 ≤ ε‖X(αkΛδ(αk+1u))‖

2
L2 + Cε‖αk+1u‖

2
L2 .
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We have for any S ≥ 1,

‖ log(ΛS)Λδ(αk+1u)‖
2
L2 ≤ S2ε‖X(αkΛδ(αk+1u))‖

2
L2 + S2Cε‖αk+1u‖

2
L2

+ ‖ log(ΛS)(αk − 1)Λδ(αk+1u)‖
2
L2

≤ S2ε
(
C1‖αk+1u‖

2
L2 + C2`

2‖αku‖
2
L2

)

+ S2Cε‖αk+1u‖
2
L2 + ‖ log(ΛS)(αk − 1)Λδ(αk+1u)‖

2
L2 .

For the last term of right hand side, the proposition 3.2 gives

‖ log(ΛS)(αk − 1)Λδ(αk+1u)‖
2
L2 ≤ CS`

4S+6n+8‖βu‖2
L2 .

We have proved (3.5) for j = 1 if we choose ε > 0 small such that εS2 ≤ 1
and

M2
0 ≥ C1 +C2 +C3 + 1, R2

S ≥ (SC1/S +CS)‖βu‖2
L2 , 2mS ≥ 10(S + n+ 2).

2) Suppose now that there exists a j ≤ ` − 1 such that (3.5) is true for
any p ≤ j. We shall prove (3.5) for j + 1. Firstly, take δ → 0, we have for
any p ≤ j and p ≤ k ≤ `

(3.6) ‖
(
log ΛS

)p
(αku)‖L2 ≤ (M0`)

p`mSRS ,

and
(3.7)

∑

0≤j′≤min{j,S+2}

(
j!

(j − j′)!

)2

‖
(
log ΛS

)j−j′
Λδαk−j′u‖

2
L2 ≤ CS(M0`)

2j`2m
SR2

S .

For j ≤ k ≤ `− 1, set

v = αk+1Λδ(log ΛS)jα2
k(log ΛS)jΛδ(αk+1u),

then v ∈ H1
0 (Ω), using v as test function in (1.2),

∫

Ω

( m∑

p=1

X∗
pXpu

)
vdx =

∫

Ω

(
F (x, u) −X0u

)
vdx.

By using integration by part, Cauchy-Schwarz inequality, induction hypoth-
esis, Proposition 3.2 and Proposition 3.3, we have that, if mS ≥ 5(S+n+2),

m∑

p=1

‖Xpαk(log ΛS)jΛδ(αk+1u)‖
2
L2 ≤

1

2
‖ log(ΛS)αk(log ΛS)jΛδ(αk+1u)‖

2
L2

+C̃S(M0`)
2j+2`2m

SR2
S .

Using (3.2) with N = S and the proposition 3.2, we get

‖ log Λαk(log ΛS)jΛδ(αk+1u)‖
2
L2

≤ ε

m∑

p=1

‖Xpαk(log ΛS)jΛδ(αk+1u)‖
2
L2 + Cε,S‖αk(log ΛS)jΛδ(αk+1u)‖

2
H−S .
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Choose ε > 0 small enough such that εS2 ≤ 1, εS2CS ≤ 1/4, we get (3.5)
if we take

R2
S ≥ 2(2S2Cε,S+1 + 3CS)‖βu‖2

L2 .

Regularity up to the boundary
As in the classical case, we transform firstly the non homogeneous Dirich-

let problem (1.2)–(1.3) into a homogeneous Dirichlet problem, i. e. we
suppose that g = 0 in (1.3). Suppose now that u ∈ L∞(Ω) ∩H1

X,0(Ω) is a

weak solution of Dirichlet problem (1.2))–(1.3), we have already the interior
regularity u ∈ C∞(Ω), and so we want to prove here that u ∈ C∞(Ω̄), that
is C∞ regularity up to the boundary.

Since ∂Ω is C∞ and non characteristic for the system of vector fields X,
near a point of ∂Ω, we use the standard process of localization and a C∞

change of variable to flatten out the boundary (we keep the same notation
for the solution u), then the weak solution u satisfies the following equation
(see [2, 3, 15]) :
(3.8)



∂2
xn

(αu) −
∑m−1

j=1 Y ∗
j Yj(αu) = ∂xn(a0βu) + Y0(βu) + F̃ (x, βu), in R

n
+

βu(x′, 0) = 0, for x′ ∈ R
n−1

where α, β, a0 ∈ C∞
0 (Rn

+), α ⊂⊂ β with Suppβ a neighborhood of 0 in R
n,

and Yj =
∑n−1

k=1 ajk(x
′, xn)∂xk

, j = 0, 1, · · · ,m − 1 are the tangential vector
fields. We have that the system of vector fields Y = (∂xn , Y1, · · · , Ym−1)
satisfies still the logarithmic regularity estimates (1.1) or (1.4) on a neigh-
borhood O ⊂ R

n of 0. Remark that we have βu ∈ L∞(Rn
+) ∩H1

Y,0(R
n
+).

Let Λ′ = (e+ |D′|2)1/2 with D′ = (Dx1 , · · · , Dxn−1). On account of (1.4),
for any small ε > 0, there exists Cε > 0 such that
(3.9)

‖(log Λ′)v‖2
L2(Rn) ≤ ε

( m−1∑

j=1

‖Yjv‖
2
L2(Rn) + ‖∂xnv‖

2
L2(Rn)

)
+ Cε‖v‖

2
L2(Rn),

for all v ∈ C∞
0 (O ∩ R

n
+). By density, this is true for v ∈ H1

Y,0(O ∩ R
n
+).

Firstly for the nonlinear term we have the similar result as in (3.1) :

Suppose that βu ∈ H log
0,` (Rn

+) ∩ L∞(Rn
+) for some ` > 1/2, then for any

S ≥ 1, we have
(3.10)

‖
(
log Λ′S

)`−1/2
(αF̃ (x, βu))‖2

L2(Rn
+) ≤ A2

S

(
`2`−1‖βu‖2

L2(Rn
+)

+ (2`− 1)‖
(
log Λ′S

)`
(βu)‖2

L2(Rn
+)

)
,

where AS depends on S, ‖u‖L∞ and ‖α(x)F̃ (x, t)‖C[S]+2((Rn
+×[−‖u‖L∞ ,‖u‖L∞ ])

, but not on `.
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If the equation (1.2) is linear, we use the following estimate : If f ∈
C∞(Rn

+), then for any ` ∈ N, any S ≥ 1, and α ∈ C∞
0 (Rn

+),

‖(log Λ′S)`(αf)‖L2(Rn
+) ≤ `!‖Λ′S(αf)‖L2(Rn

+).

For small δ > 0, we set Λ′
δ = (1 − δ4x′)−1, with 4x′ =

∑n−1
j=1 ∂

2
xj

, this

is a tangential regularization operators. As for the proposition 3.1, we have
that for any ` ∈ N, and any S ≥ 1,

(3.11) ‖
(
log Λ′S

)`
Λ′

δ(αu)‖L2(Rn
+) ≤ (M0`)

``mSRS,

with the same constants as in (3.3). By using the estimates (3.9) and (3.10),
the proof of this estimations is exactly as that of proposition 3.1, for example
in the step 2 of proof for the proposition 3.1, we take here

v = αk+1Λ
′
δ(log Λ′S)jα2

k(log Λ′S)jΛ′
δ(αk+1u),

as test function in (3.8). In fact, we have v, ∂xnv,Λ
′v ∈ L2(Rn

+) and

v(x′, 0) = 0, then v ∈ H1
0 (Rn

+). Moreover, αk+1Λ
′
δ(log Λ′S)jα2

k(log Λ′S)jΛ′
δαk+1

is a tangential pseudo-differential operators, thus all pseudo-differential cal-
culus in the proof is tangential, and the integration by part for the variable
xn take only once.

Now the estimate (3.11) implies that Λ′m(αu) ∈ L2(Rn
+) for any m ∈ N

and any α ∈ C∞
0 (O ∩ Rn

+), and we have already ∂xn(αu) ∈ L2(Rn
+), so that

we have αu ∈ H1(Rn
+). For m ≥ 2, we have, by using the equation (3.8),

∂2
xn

(αu) =

m−1∑

j=1

Y ∗
j Yj(αu) + ∂xn(a0βu) + Y0(βu) + F̃ (x, βu) ∈ L2(Rn

+),

then, we have αu ∈ H2(Rn
+). By induction we prove that αu ∈ Hm(Rn

+) for

any m ∈ N. We have proved finally αu ∈ C∞(Rn
+) by Sobolev embedding

theorem. Take α = 1 near 0 ∈ R
n, we have proved u ∈ C∞(Õ ∩ Rn

+) for Õ
a neighborhood of 0 in R

n. So that we get the C∞ regularity of solution up
to the boundary.
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