
S E M I N A I R E

Equations aux
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Stability of standing waves for nonlinear
Schrödinger equations with potentials

Reika Fukuizumi

1. Introduction and Main Result

The nonlinear Schrödinger equations with a real valued potential V (x):

i∂tu = −∆u+ V (x)u− |u|p−1u, (t, x) ∈ R
1+n (1.1)

arises in various physical contexts. When V (x) ≡ 0, equation (1.1) appears in such as
nonlinear optics and plasma physics (see, e.g., [5, 26, 29]). The nonlinearity enters due
to the effect of changes in the field intensity on the wave propagation characteristics
of the medium. The potential V (x) can be thought of as modeling inhomogeneities in
the medium. In [23], equation (1.1) with a bounded potential V (x) is studied as a
model proposed to describe the local dynamics at a nucleation site. Equation (1.1) with
a harmonic potential V (x) = |x|2 is known as a model to describe the Bose-Einstein
condensate with attractive inter-particle interactions under a magnetic trap (see, e.g.,
[1, 12, 27]).

We always assume 1 < p < 2∗−1. Here, we put 2∗ = ∞ if n = 1, 2, and 2∗ = 2n/(n−2)
if n ≥ 3. In this talk, we particularly discuss the critical case p = 1 + 4/n and treat the
case V (x) = |x|2 for the sake of simplicity. Our main purpose of this talk is to prove the
stability of standing wave solution in such case.

By a standing wave, we mean a solution of (1.1) of the form

uω(t, x) = eiωtφω(x),

where ω ∈ R is a frequency, and φω(x) is a ground state of

−∆φ + |x|2φ+ ωφ− |φ|p−1φ = 0, x ∈ R
n. (1.2)

Indeed, there exists a unique positive radial solution φω(x) of the stationary problem (1.2)
for any ω > −λ1 in the energy space, which is a ground state solution, where λ1 is the
first eigenvalue of the operator −∆ + |x|2 (see the author [8] for the existence, Li and Ni
[20] for the radial symmetry of positive solutions, Kabeya and Tanaka [17], Hirose and
Ohta [15, 16] for the uniqueness).

Many authors have been studying the problem of stability and instability of standing
waves for nonlinear Schrödinger equations (see, e.g., [2, 4, 6, 7, 8, 9, 10, 13, 14, 18,

21, 23, 24, 25, 28, 30, 31, 32]). We recall some known results. First, we consider the
case V (x) ≡ 0. For any ω > 0, there exists a unique positive radial solution ψω(x) of

−∆ψ + ωψ − |ψ|p−1ψ = 0, x ∈ R
n (1.3)
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in H1(Rn) (see Kwong [19] for the uniqueness), and the standing wave solution eiωtψω(x)
of (1.1) with V (x) ≡ 0 is stable for any ω > 0 if p < 1+4/n (see Cazenave and Lions [4]),
and unstable for any ω > 0 if p ≥ 1 + 4/n (see Berestycki and Cazenave [2], Weinstein
[28]).

For the case where V (x) = |x|2, Ohta and the author [10] showed that the standing
wave solution eiωtφω(x) of (1.1) is stable for ω such that ω > −λ1 and sufficiently close
to −λ1 (see also Kunze et al. [18]). Moreover, we proved in [9, 10] that the standing
wave solution eiωtφω(x) of (1.1) is unstable for sufficiently large ω > 0 if p > 1 + 4/n and
that the standing wave solution eiωtφω(x) of (1.1) is stable for sufficiently large ω > 0 if
p < 1 + 4/n.

Here, we define a real Hilbert space Σ by

Σ := {v ∈ H1(Rn,C) ; |x|2|v(x)|2 ∈ L1(Rn)}
with the inner product

(v, w)Σ := Re

∫

Rn

(v(x)w(x) + ∇v(x) · ∇w(x) + |x|2v(x)w(x))dx.

The norm of Σ is denoted by ‖ · ‖Σ. Moreover, we define the energy functional E and the
charge Q on Σ by

E(v) :=
1

2
‖∇v‖2

2 +
1

2
‖xv‖2

2 −
1

p + 1
‖v‖p+1

p+1, Q(v) :=
1

2
‖v‖2

2.

The time local well-posedness for the Cauchy problem to (1.1) in Σ and the conser-
vation of the energy E(v) and the charge Q(v) have been established (see Oh [22] and
Theorem 9.2.5 of Cazenave [3]). Namely, we have the following proposition.

Proposition 1.1. For any u0 ∈ Σ, there exist T = T (‖u0‖Σ) > 0 and a unique

solution u(t) ∈ C([0, T ],Σ) of (1.1) with u(0) = u0 satisfying

E(u(t)) = E(u0), Q(u(t)) = Q(u0), t ∈ [0, T ].

The stability and instability of standing wave solutions are formulated as follows.

Definition 1. we put

Uδ(φω) :=

{

v ∈ Σ : inf
θ∈R

‖v − eiθφω‖Σ < δ

}

.

We say that a standing wave solution eiωtφω(x) of (1.1) is stable in Σ if for any ε > 0
there exists δ > 0 such that for any u0 ∈ Uδ(φω), the solution u(t) of (1.1) with u(0) = u0

satisfies u(t) ∈ Uε(φω) for any t ≥ 0. Otherwise, eiωtφω(x) is said to be unstable in Σ.

Our main result is the following.

Theorem 1.1. Let p = 1 + 4/n. Then there exists ω∗ ∈ (0,∞) such that the standing

wave solution eiωtφω(x) of (1.1) is stable in Σ for any ω ∈ (ω∗,∞).
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Remark 1.1. When V (x) ≡ 0 and p = 1 + 4/n, Weinstein [28] proved that the
standing wave solution eiωtφω(x) is strongly unstable for ω > 0 (see also Berestycki and
Cazenave [2]). However, the argument in [2] and [28] cannot be applied to the case
V (x) 6≡ 0. The standing wave solution of (1.1) with V (x) ≡ 0 corresponds to 0 energy, but,
the standing wave solution with V (x) = |x|2 always corresponds to positive energy. In [32],
Zhang discussed the instability of the standing wave solution for (1.1) with V (x) = |x|2
and p ≥ 1 + 4/n. He constructed a kind of cross-constrained minimization problem
following [2], but it is not easy to verify his sufficient condition for the strong instability.
To our knowledge, the problem whether the standing wave solution of (1.1) with V (x) 6≡ 0
and p = 1 + 4/n is stable or unstable is still open for ω > 0. Therefore, by Theorem 1.1,
we may answer that the standing wave solution of (1.1) with p = 1+4/n and V (x) = |x|2
is stable for sufficiently large ω > 0. Furthermore, in Appendix, we give a sufficient
condition for V (x) 6≡ 0 to prove the same statement of Theorem 1.1. Here, we remark
that the standing wave solution eiωtφω(x) of (1.1) is stable for ω such that ω > −λ1 and
sufficiently close to −λ1 even if p = 1 + 4/n (see [10]).

Remark 1.2. For a bounded potential V (x), Rose and Weinstein [23] studied by
numerical simulations that if p = 1 + 4/n, ‖φω‖2

2 would increase for large ω, so that
eiωtφω(x) would be stable. We can affirm that this numerical result is correct by Theorem
1.1 for large ω > 0 since our result is also valid for a bounded potential (see Appendix).

Put d(ω) = Sω(φω), where Sω is the action functional, i.e.,

Sω(v) =
1

2
‖∇v‖2

2 +
1

2
‖xv‖2

2 +
ω

2
‖v‖2

2 −
1

p+ 1
‖v‖p+1

p+1.

To prove Theorem 1.1, we verify the following sufficient condition for stability which was
obtained by Shatah [24].

Proposition 1.2. Let 1 < p < 2∗ − 1. If d′′(ω) > 0 at ω = ω0, then the standing

wave solution eiω0tφω0
(x) of (1.1) is stable in Σ.

In the case where V (x) ≡ 0, by the scaling ψω(x) = ω1/(p−1)ψ1(
√
ωx), we have d0(ω) =

ω2/(p−1)−n/2+1d0(1), where we put d0(ω) = Sω(ψω) with V (x) ≡ 0. Therefore, it is easy to
check the increase and decrease of d′0(ω). However, it seems difficult to check this property
of d(ω) for general V (x).

2. Properties of a ground state

First we remark that d(ω) is simply rewritten by

d(ω) = Sω(φω) =
p− 1

2(p+ 1)
‖φω‖p+1

p+1 (2.1)

(see [9]). In this section, we present the properties of a rescaled function of φω(x) to
check the stability condition d′′(ω) > 0 in Proposition 1.2. Namely, we define the rescaled

function φ̃ω(x) by

φω(x) = ω1/(p−1)φ̃ω(
√
ωx), ω ∈ (0,∞).

IX–3



Then φ̃ω(x) satisfies

−∆φ̃ω + ω−2|x|2φ̃ω + φ̃ω − |φ̃ω|p−1φ̃ω = 0 (2.2)

and we have

(2.1) =
p− 1

2(p+ 1)
ωα‖φ̃ω‖p+1

p+1, (2.3)

where α = (p+ 1)/(p− 1) − n/2.

Remark 2.1. We note that α > 1 if p < 1+4/n, α = 1 if p = 1+4/n and that α < 1
if p > 1 + 4/n.

Define the linearized operator L̃ω by

L̃ω := −∆ + 1 + ω−2|x|2 − pφ̃ω
p−1

(x), ω ∈ (0,∞).

Proposition 2.1. Let 1 < p < 2∗−1 and ψ1(x) be the unique positive radial solution

of (1.3) with ω = 1. Then the followings hold.

(i) lim
ω→∞

‖φ̃ω − ψ1‖H1 = 0.

(ii) φ̃ω(r) → 0 as r → ∞. ( independent of ω )
(iii) There exist C0(n) > 0, r0(n, p) > 0 and ω1(n, p) > 0 such that

|φ̃ω(r)| ≤ C0r
−(n−1)/2e−r/2

for any r ≥ r0 and ω ≥ ω1.

(iv) L̃ω is invertible and L̃ω
−1

is bounded for sufficiently large ω, i.e., there exist

ω2 > 0 and C2 > 0 such that for any ω ≥ ω2

‖L̃ωv‖2 ≥ C2‖v‖2

for any v ∈ H2
rad(R

n) and |x|2v ∈ L2(R2).

(v) ω 7→ φ̃ω is a C1 mapping from (0,∞) to Σ for sufficiently large ω.

Remark 2.2. In order for the constant C2 not to depend on the frequency ω, we show
(iv) by considering L̃ω as a perturbation of L0, where L0 := −∆ + 1− pψp−1

1 . It is known
that there exists C1 > 0 such that ‖L0v‖2 ≥ C1‖v‖2 for any v ∈ H2

rad(R
n).

3. Proof of Theorem 1

In this section, we verify the sufficient condition for stability for large ω. First, we
need the following lemma.

Lemma 3.1. Let 1 < p < 2∗ − 1. Then we have

(i) L̃ω

(

∂φ̃ω

∂ω

)

= 2ω−3|x|2φ̃ω,

(ii)

∫

Rn

φ̃ω
p
(x)

∂φ̃ω

∂ω
(x)dx = − 2ω−3

p− 1

∫

Rn

|x|2φ̃ω
2
(x)dx.
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In the following Lemma, we check the sufficient condition for stability d′′(ω) > 0 for
sufficiently large ω. Combining the following Lemma 3.2 with Proposition 1.2, we have
Theorem 1.1.

Lemma 3.2. Let p = 1 + 4/n. Then there exists ω∗ > 0 such that d′′(ω) > 0 for any

ω ∈ (ω∗,∞).

Outline of the proof of Lemma 3.2. We directly differentiate d(ω) with respect to
ω. Using Lemma 3.1, we have

d′′(ω) = ω−3

∫

Rn

|x|2φ̃ω
2
(x)dx− 4ω−5

∫

Rn

|x|2φ̃ωL̃ω
−1

(|x|2φ̃ω)dx

≥ ω−3

∫

Rn

|x|2φ̃ω
2
(x)dx− Cω−5

∫

Rn

|x|4φ̃ω
2
(x)dx (3.1)

for sufficiently large ω. We have used the boundedness of the linearized operator (Propo-
sition 2.1 (iv)) in the last inequality. We divide (3.1) into three parts:

(3.1) = (I) − (II) + (III),

(I) := ωn/2−2

∫

|y|≤1

|y|2φ̃ω
2
(
√
ωy)dy,

(II) := Cωn/2−3

∫

|y|≤1

|y|4φ̃ω
2
(
√
ωy)dy,

(III) := ωn/2−2

∫

|y|≥1

|y|2φ̃ω
2
(
√
ωy)dy

−Cωn/2−3

∫

|y|≥1

|y|4φ̃ω
2
(
√
ωy)dy.

Then it follows from Proposition 2.1 (i) and (iii) that

(I) = ω−3

∫

0≤|x|≤√
ω

|x|2φ̃ω
2
(x)dx ≥ ω−3

∫

1≤|x|≤√
ω

φ̃ω
2
(x)dx

≥ ω−3

2

∫

1≤|x|
ψ2

1(x)dx,

|(II)| ≤ Cω−5

∫

0≤|x|≤√
ω

|x|4φ̃ω
2
(x)dx

≤ Cω−5

{
∫

0≤|x|≤r0

|x|4φ̃ω
2
(x)dx+

∫

r0≤|x|≤√
ω

|x|4φ̃ω
2
(x)dx

}

≤ Cω−5

{

r4
0

∫

Rn

ψ2
1(x)dx+

∫

r0≤|x|
|x|4−(n−1)e−|x|dx

}

,

|(III)| ≤ Cω−2e−
√

ω,

for sufficiently large ω, where r0 is as in Proposition 2.1 (iii). Thus, we have consequencely
that d′′(ω) is strictly positive for sufficiently large ω.
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4. Appendix

In this section, we give a sufficient condition for more general potentials V (x) which
are valid for Theorem 1.1. However, we need to consider this case in radially symmetric
space and we have to assume the time local well-posedness for the Cauchy problem to
(1.1).

Assumptions for V (x). There exist real valued, radially symmetric functions V1(x) =
V1(|x|) and V2(x) = V2(|x|) such that V (x) = V1(x) + V2(x).

(V0) Vj(x) ≥ 0 in Rn and Vj(x) ∈ C2(Rn,R), for j = 1, 2.
(V1-1) For α with |α| ≤ 2, there exist Cα > 0 and mα > 0 such that

|xα∂α
xV1(x)| ≤ Cα(1 + |x|mα) for |x| ≥ 1.

(V1-2) ∆V1(x) ∈ L∞({|x| ≥ 1}).
(V2) xα∂α

xV2(x) ∈ L∞({|x| ≥ 1}) for |α| ≤ 2.
(V3-1) There exist δ1 > 0 and β > 0 such that

3x · ∇V (x) + Σk,lxkxl∂k∂lV (x) ≥ δ1|x|β for |x| ≤ 1.
(V3-2) There exist δ2 > 0 and ε > 0 with 0 < β < 2(1 + ε) such that

|V (x) + (1/2)x · ∇V (x)| ≤ δ2|x|ε for |x| ≤ 1.

Remark 4.1. The conditions (V3-1) and (V3-2) derive from the twice differentiation of
ω−1V (x/

√
ω) with respect to ω for the verification of the sufficient condition for stability.

Examples. (i) (Harmonic potentials) For c1, · · · , cn ∈ R,
∑n

j=1 c
2
jx

2
j satisfies (V0)

(V1-1) (V1-2) (V3-1) and (V3-2) with V2(x) ≡ 0.
(ii) Let n ≥ 2 and U(x) ∈ C2(Rn) be a nonnegative, radially symmetric function which
satisfies |∂α

xU(x)| ≤ Cα < x >−|α| for |α| ≤ 2 and there exist θ ≥ 2 and C > 0 such that
U(x) = C|x|θ for |x| ≤ 1. Then, U(x) verifies (V0) (V2) (V3-1) (V3-2) with V1(x) ≡ 0.
(iii) V (x) ≡ 1 satisfies (V0) (V1-1) (V1-2) and (V2), but does not satisfy (V3-1) and
(V3-2) which bring out the difference from the pure power case.

Details shall be published in [11].
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26, IM-UFRJ, Rio de Janeiro, 1993.

4. T. Cazenave and P. L. Lions, ”Orbital stability of standing waves for some nonlinear Schrödinger

equations”, Commun. Math. Phys. Vol. 85 (1982), 549–561.

5. R. Y. Chiao, E. Garmine and C. H. Townes, ”Self-trapping of optical beams”, Phys. Rev. Lett. Vol.

13 (1964), 479–482.

6. C. Cid and P. Felmer, ”Orbital stability of standing waves for the nonlinear Schrödinger equation

with potential”, Rev. Math. Phys. Vol. 13 (2001), 1529–1546.

7. G. Fibich and X. P. Wang, ”Stability of solitary waves for nonlinear Schrödinger equations with

inhomogeneous nonlinearities”, Physica D. Vol. 175 (2003), 96–108.

8. R. Fukuizumi, ”Stability and instability of standing waves for the nonlinear Schrödinger equation

with harmonic potential”, Discrete Contin. Dynam. Systems. Vol. 7 (2001), 525–544.

9. R. Fukuizumi and M. Ohta, ”Instability of standing waves for nonlinear Schrödinger equations with

potentials”, Differential and Integral Eqs. Vol. 16 (2003), 691–706.

10. R. Fukuizumi and M. Ohta, ”Stability of standing waves for nonlinear Schrödinger equations with

potentials”, Differential and Integral Eqs. Vol. 16 (2003), 111–128.

11. R. Fukuizumi, “Stability of standing waves for nonlinear Schrödinger equations with critical power

nonlinearity and potentials,” Preprint.

12. A. Griffin, D. W. Snoke and S. Stringari, “Bose-Einstein condensation,” Cambridge University Press,

Cambridge, 1995.

13. M. Grillakis, J. Shatah and W. Strauss, ”Stability theory of solitary waves in the presence of symmetry

I”, J. Funct. Anal. Vol. 74 (1987), 160–197.

14. M. Grillakis, J. Shatah and W. Strauss, ”Stability theory of solitary waves in the presence of symmetry

II”, J. Funct. Anal. Vol. 94 (1990), 308–348.

15. M. Hirose and M. Ohta, ”Structure of positive radial solutions to scalar field equations with harmonic

potential”, J. Differential Eqs. Vol. 178 (2002), 519–540.

16. M. Hirose and M. Ohta, ”Uniqueness of positive solutions to scalar field equations with harmonic

potential”, Preprint.

17. Y. Kabeya and K. Tanaka, ”Uniqueness of positive radial solutions of semilinear elliptic equations
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