Propagation of singularities for the wave equation on manifolds with corners
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2004-2005), Exposé no. 20, 16 p.

In this talk we describe the propagation of 𝒞 and Sobolev singularities for the wave equation on 𝒞 manifolds with corners M equipped with a Riemannian metric g. That is, for X=M× t , P=D t 2 -Δ M , and uH loc 1 (X) solving Pu=0 with homogeneous Dirichlet or Neumann boundary conditions, we show that WF b (u) is a union of maximally extended generalized broken bicharacteristics. This result is a 𝒞 counterpart of Lebeau’s results for the propagation of analytic singularities on real analytic manifolds with appropriately stratified boundary, [7]. Our methods rely on b-microlocal positive commutator estimates, thus providing a new proof for the propagation of singularities at hyperbolic points even if M has a smooth boundary (and no corners).

These notes are a summary of [17], where the detailed proofs appear.

Classification : 58J47, 35L20
Vasy, András 1

1 Department of Mathematics, MIT and Northwestern University
@article{SEDP_2004-2005____A20_0,
     author = {Vasy, Andr\'as},
     title = {Propagation of singularities for the wave equation on manifolds with corners},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:20},
     pages = {1--16},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2004-2005},
     mrnumber = {2182064},
     language = {fr},
     url = {http://archive.numdam.org/item/SEDP_2004-2005____A20_0/}
}
TY  - JOUR
AU  - Vasy, András
TI  - Propagation of singularities for the wave equation on manifolds with corners
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:20
PY  - 2004-2005
SP  - 1
EP  - 16
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://archive.numdam.org/item/SEDP_2004-2005____A20_0/
LA  - fr
ID  - SEDP_2004-2005____A20_0
ER  - 
%0 Journal Article
%A Vasy, András
%T Propagation of singularities for the wave equation on manifolds with corners
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:20
%D 2004-2005
%P 1-16
%I Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://archive.numdam.org/item/SEDP_2004-2005____A20_0/
%G fr
%F SEDP_2004-2005____A20_0
Vasy, András. Propagation of singularities for the wave equation on manifolds with corners. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2004-2005), Exposé no. 20, 16 p. http://archive.numdam.org/item/SEDP_2004-2005____A20_0/

[1] J. Cheeger and M. Taylor. Diffraction by conical singularities, I, II. Comm. Pure Applied Math., 35 :275–331, 487–529, 1982. | Zbl

[2] J. J. Duistermaat and L. Hörmander. Fourier integral operators, II. Acta Mathematica, 128 :183–269, 1972. | MR | Zbl

[3] A. Hassell, R. B. Melrose, and A. Vasy. Scattering for symbolic potentials of order zero and microlocal propagation near radial points. Preprint, 2005.

[4] A. Hassell, R. B. Melrose, and A. Vasy. Spectral and scattering theory for symbolic potentials of order zero. In Séminaire : Équations aux Dérivées Partielles, 2000–2001, Sémin. Équ. Dériv. Partielles, pages Exp. No. XIII, 21. École Polytech., Palaiseau, 2001. | Numdam | MR | Zbl

[5] L. Hörmander. Fourier integral operators, I. Acta Mathematica, 127 :79–183, 1971. | MR | Zbl

[6] L. Hörmander. The analysis of linear partial differential operators, vol. 1-4. Springer-Verlag, 1983.

[7] G. Lebeau. Propagation des ondes dans les variétés à coins. Ann. Scient. Éc. Norm. Sup., 30 :429–497, 1997. | Numdam | MR | Zbl

[8] R. B. Melrose and J. Sjöstrand. Singularities of boundary value problems. I. Comm. Pure Appl. Math, 31 :593–617, 1978. | MR | Zbl

[9] R. B. Melrose and J. Sjöstrand. Singularities of boundary value problems. II. Comm. Pure Appl. Math, 35 :129–168, 1982. | MR | Zbl

[10] R. B. Melrose, A. Vasy, and J. Wunsch. Propagation of singularities for the wave equation on manifolds with edges. In preparation.

[11] R. B. Melrose and J. Wunsch. Propagation of singularities for the wave equation on conic manifolds. Invent. Math., 156(2) :235–299, 2004. | MR | Zbl

[12] R. B. Melrose. Transformation of boundary problems. Acta Math., 147(3-4) :149–236, 1981. | MR | Zbl

[13] R. B. Melrose and P. Piazza. Analytic K-theory on manifolds with corners. Adv. Math., 92(1) :1–26, 1992. | MR | Zbl

[14] M. Mitrea, M. Taylor, and A. Vasy. Lipschitz domains, domains with corners and the Hodge Laplacian. Preprint, 2004. | MR

[15] A. Vasy. Propagation of singularities in many-body scattering. Ann. Sci. École Norm. Sup. (4), 34 :313–402, 2001. | Numdam | MR | Zbl

[16] A. Vasy. Propagation of singularities in many-body scattering in the presence of bound states. J. Func. Anal., 184 :177–272, 2001. | MR | Zbl

[17] A. Vasy. Propagation of singularities for the wave equation on manifolds with corners. Preprint, 2004.