In this talk we describe the propagation of and Sobolev singularities for the wave equation on manifolds with corners equipped with a Riemannian metric . That is, for , , and solving with homogeneous Dirichlet or Neumann boundary conditions, we show that is a union of maximally extended generalized broken bicharacteristics. This result is a counterpart of Lebeau’s results for the propagation of analytic singularities on real analytic manifolds with appropriately stratified boundary, [7]. Our methods rely on b-microlocal positive commutator estimates, thus providing a new proof for the propagation of singularities at hyperbolic points even if has a smooth boundary (and no corners).
These notes are a summary of [17], where the detailed proofs appear.
@article{SEDP_2004-2005____A20_0, author = {Vasy, Andr\'as}, title = {Propagation of singularities for the wave equation on manifolds with corners}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:20}, pages = {1--16}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2004-2005}, mrnumber = {2182064}, language = {fr}, url = {http://archive.numdam.org/item/SEDP_2004-2005____A20_0/} }
TY - JOUR AU - Vasy, András TI - Propagation of singularities for the wave equation on manifolds with corners JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:20 PY - 2004-2005 SP - 1 EP - 16 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://archive.numdam.org/item/SEDP_2004-2005____A20_0/ LA - fr ID - SEDP_2004-2005____A20_0 ER -
%0 Journal Article %A Vasy, András %T Propagation of singularities for the wave equation on manifolds with corners %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:20 %D 2004-2005 %P 1-16 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://archive.numdam.org/item/SEDP_2004-2005____A20_0/ %G fr %F SEDP_2004-2005____A20_0
Vasy, András. Propagation of singularities for the wave equation on manifolds with corners. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2004-2005), Exposé no. 20, 16 p. http://archive.numdam.org/item/SEDP_2004-2005____A20_0/
[1] J. Cheeger and M. Taylor. Diffraction by conical singularities, I, II. Comm. Pure Applied Math., 35 :275–331, 487–529, 1982. | Zbl
[2] J. J. Duistermaat and L. Hörmander. Fourier integral operators, II. Acta Mathematica, 128 :183–269, 1972. | MR | Zbl
[3] A. Hassell, R. B. Melrose, and A. Vasy. Scattering for symbolic potentials of order zero and microlocal propagation near radial points. Preprint, 2005.
[4] A. Hassell, R. B. Melrose, and A. Vasy. Spectral and scattering theory for symbolic potentials of order zero. In Séminaire : Équations aux Dérivées Partielles, 2000–2001, Sémin. Équ. Dériv. Partielles, pages Exp. No. XIII, 21. École Polytech., Palaiseau, 2001. | Numdam | MR | Zbl
[5] L. Hörmander. Fourier integral operators, I. Acta Mathematica, 127 :79–183, 1971. | MR | Zbl
[6] L. Hörmander. The analysis of linear partial differential operators, vol. 1-4. Springer-Verlag, 1983.
[7] G. Lebeau. Propagation des ondes dans les variétés à coins. Ann. Scient. Éc. Norm. Sup., 30 :429–497, 1997. | Numdam | MR | Zbl
[8] R. B. Melrose and J. Sjöstrand. Singularities of boundary value problems. I. Comm. Pure Appl. Math, 31 :593–617, 1978. | MR | Zbl
[9] R. B. Melrose and J. Sjöstrand. Singularities of boundary value problems. II. Comm. Pure Appl. Math, 35 :129–168, 1982. | MR | Zbl
[10] R. B. Melrose, A. Vasy, and J. Wunsch. Propagation of singularities for the wave equation on manifolds with edges. In preparation.
[11] R. B. Melrose and J. Wunsch. Propagation of singularities for the wave equation on conic manifolds. Invent. Math., 156(2) :235–299, 2004. | MR | Zbl
[12] R. B. Melrose. Transformation of boundary problems. Acta Math., 147(3-4) :149–236, 1981. | MR | Zbl
[13] R. B. Melrose and P. Piazza. Analytic -theory on manifolds with corners. Adv. Math., 92(1) :1–26, 1992. | MR | Zbl
[14] M. Mitrea, M. Taylor, and A. Vasy. Lipschitz domains, domains with corners and the Hodge Laplacian. Preprint, 2004. | MR
[15] A. Vasy. Propagation of singularities in many-body scattering. Ann. Sci. École Norm. Sup. (4), 34 :313–402, 2001. | Numdam | MR | Zbl
[16] A. Vasy. Propagation of singularities in many-body scattering in the presence of bound states. J. Func. Anal., 184 :177–272, 2001. | MR | Zbl
[17] A. Vasy. Propagation of singularities for the wave equation on manifolds with corners. Preprint, 2004.