

SEMINAIRE

Equations aux Dérivées Partielles

2004-2005

Johannes Sjöstrand

Asymptotics for Bergman kernels for high powers of complex line bundles, based on joint works with B. Berndtsson and R. Berman

Séminaire É. D. P. (2004-2005), Exposé nº XXII, 8 p.

http://sedp.cedram.org/item?id=SEDP_2004-2005_____A22_0

 $\begin{array}{c} {\rm U.M.R.\ 7640\ du\ C.N.R.S.} \\ {\rm F-91128\ PALAISEAU\ CEDEX} \end{array}$

 $\begin{array}{l} {\rm Fax}: 33\ (0)1\ 69\ 33\ 49\ 49 \\ {\rm T\'el}: 33\ (0)1\ 69\ 33\ 49\ 99 \end{array}$

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Asymptotics for Bergman kernels for high powers of complex line bundles, based on joint works with B.Berndtsson and R.Berman

Johannes Sjöstrand CMLS, Ecole Polytechnique, FR-91128 Palaiseau Cédex

 $R\acute{e}sum\acute{e}$: Nous discutons l'asymptotique des noyaux de Bergman pour des puissances élevées de fibrés de droites, d'après deux travaux récents avec B.Berndtsson et R. Berman*

0. Introduction.

We present some new proofs and results around the so called Tian—Yau—Zelditch—Catlin asymptotics for the orthogonal projections onto the spaces of harmonic forms with coefficients in a high power of a complex line-bundle:

- 1) For (0,0)-forms: Here we give a new proof (joint work with B.Berndtsson and R.Berman [BeBeSj].)
- 2) For (0,q)-forms: New result and proof (joint work with R.Berman [BeSj]).

The subject has gained new interest recently through the work of geometers. M. Shubin suggested closely related problems to me 11 years ago, and later I got more stimulation mainly through the works of Shiffman, Zelditch and coworkers and from dicussions with Berndtsson and Berman around the work [Be], as well as with X.Ma. The plan of the talk is:

- 1) Statement of the result.
- 2) Some historical remarks.
- 3) Quick outline of a new proof for (0,0)-forms.
- 4) Outline of the proof for (0,q)-forms.

1. The result

Let L be a holomorphic line bundle over a complex compact manifold X of dimension n. Assume the fibers L_x and $\wedge^{1,0}T_xX$ carry Hermitian metrics that depend smoothly on $x \in X$.

If s is a non-vanishing holomorphic section of L on the open subset $X \subset X$, write $|s(x)| = e^{-\phi(x)}$ with $\phi(x)$ real and smooth. The curvature form of the line bundle is then determined by

$$\partial \overline{\partial} \phi = \sum \frac{\partial^2 \phi}{\partial z_j \partial \overline{z}_k} dz_j \wedge d\overline{z}_k,$$

where the right hand side is written in local holomorphic coordinates. Assume that $\partial \overline{\partial} \phi$ is non-degenerate of constant signature (n_+, n_-) on X.

We shall replace L by L^k and consider the $\overline{\partial}$ -complex:

$$C^{\infty}(X; L^{k} \otimes \wedge^{0,0}T^{*}X) \to C^{\infty}(X; L^{k} \otimes \wedge^{0,1}T^{*}X)$$

$$\to \dots \to C^{\infty}(X; L^{k} \otimes \wedge^{0,n}T^{*}X). \tag{1.1}$$

^{*} Key words: complex, line, bundle, MSC 2000: 32L05, 35S30

If we also fix a positive smooth integration density m(dx), we have the adjoint $\overline{\partial}^*$ -complex

$$C^{\infty}(X; L^{k} \otimes \wedge^{0,0}T^{*}X) \leftarrow C^{\infty}(X; L^{k} \otimes \wedge^{0,1}T^{*}X)$$

$$\leftarrow \dots \leftarrow C^{\infty}(X; L^{k} \otimes \wedge^{0,n}T^{*}X). \tag{1.1*}$$

We introduce

$$h = 1/k \ll 1, \text{ for } k \gg 1 \tag{1.2}$$

and the Hodge Laplacian for (0, q)-forms:

$$\Delta_q = \Delta_{q,k} = h\overline{\partial}h\overline{\partial}^* + h\overline{\partial}^*h\overline{\partial}. \tag{1.3}$$

X being compact, Δ_q is essentially self-adjoint with discrete spectrum contained in $[0, +\infty[$. Let $\mathcal{N}(\Delta_q)$ be the kernel (i.e. the 0-eigenspace) and let

$$\Pi_q: L^2(X, L^k \otimes \wedge^{0,q} T^* X) \to \mathcal{N}(\Delta_q)$$

be the orthogonal (Bergman) projection. With $\widetilde{X},\ s,\ \phi$ as above, we have the unitary identifications

$$L^{2}(\widetilde{X}; \wedge^{0,q}T^{*}X) \leftrightarrow L^{2}(\widetilde{X}; L^{k} \otimes \wedge^{0,q}T^{*}X)$$

$$u \leftrightarrow (e^{\phi}s)^{k}u$$

$$Z_{\phi} \leftrightarrow h\overline{\partial}$$

$$\Delta_{q,\text{loc}} \leftrightarrow \Delta_{q}$$

$$\Pi_{q,\text{loc}} \leftrightarrow \Pi_{q},$$

with

$$Z_{\phi} = (e^{\phi}s)^{-k} \circ h\overline{\partial} \circ (e^{\phi}s)^{k} = h\overline{\partial} + (\overline{\partial}\phi)^{\wedge},$$

$$\Delta_{q,\text{loc}} = Z_{\phi}^{*}Z_{\phi} + Z_{\phi}Z_{\phi}^{*},$$

$$\Pi_{q,\text{loc}} = (e^{\phi}s)^{-k}\Pi_{q}(e^{\phi}s)^{k}.$$

For the proof in the case of (0,0)-forms we shall also use the unitary identification

$$L^{2}(\widetilde{X}; \wedge^{0,q}T^{*}X, e^{-\frac{2\phi}{h}}m) \leftrightarrow L^{2}(\widetilde{X}; L^{k} \otimes \wedge^{0,q}T^{*}X)$$
$$e^{\phi/h}u \leftrightarrow (e^{\phi}s)^{k}u.$$

 $\Delta_{q,\text{loc}}$ has a scalar principal symbol $p \geq 0$ (times the identity matrix) vanishing precisely to the second order on the symplectic submanifold $\Sigma \subset T^*X$, given by

$$\zeta = \frac{2}{i} \frac{\partial \phi}{\partial z}, \ z = x + iy, \ \zeta = \xi - i\eta,$$

with $(x, y; \xi, \eta)$ as standard canonical coordinates on T^*X (and $z = (z_1, ..., z_n)$ denoting local holomorphic coordinates).

In [MeSj1] and later in [BoGu] it was established that there exist almost analytic manifolds (in the sense of [MelSj] and we shall from now on use the term almost holomorphic)

$$J_+, J_- \subset T^*X^{\mathbf{C}}, \ J_- = \overline{J}_+,$$

such that $J_+ \cap J_- = \Sigma^{\mathbf{C}}$ with transversal intersection, such that locally

$$J_+: f_1 = \dots = f_n = 0, \{f_j, f_k\}_{|_{J_+}} = 0,$$

$$(\frac{1}{i}\{f_j, \overline{f}_k\})_{j,k} > 0 \text{ on } \Sigma, \ p_{|_{J_+}} = 0.$$

When $n_{-}=0$, we can take f_{j} to be the semi-classical symbol of $h\frac{\partial}{\partial \overline{z}_{j}}+\frac{\partial \phi}{\partial \overline{z}_{j}}$ that will be given more explicitly below. The following theorem is mainly due to S.Zelditch and D.Catlin when $q=n_{-}=0$ and to R.Berman and Sjöstrand in the general case.

Theorem 1.1. For k = 1/h sufficiently large, we have $\Pi_q = 0$, $q \neq n_- *$ and for $q = n_-$:

$$\Pi_{q,\text{loc}}u(x) =$$

$$h^{-n} \int e^{\frac{1}{h}\psi(x,y)}b(x,y;h)u(y)m(dy) + Ru,$$
(1.4)

for $x \in \widetilde{X}$, $u \in L^2(\widetilde{X}, L^k \otimes \wedge^{0,q} T^* X)$, where $b \sim \sum_0^\infty b_j(x, y) h^j$ in $C^\infty(\widetilde{X} \times \widetilde{X}; \mathcal{L}(\wedge^{0,q} T_y^* X, \wedge^{0,q} T_x^* X))$, $Ru = \int r(x, y; h) u(y) m(dy)$, $\partial_{x,y}^\alpha r = \mathcal{O}(h^\infty)$. Further, $\psi(x, x) = 0$, $\operatorname{Re} \psi(x, y) \sim -\operatorname{dist}(x, y)^2$,

$$\begin{cases} (x, d_x \frac{1}{i} \psi(x, y)) \in J_+ \\ (y, -d_y \frac{1}{i} \psi(x, y)) \in J_- \end{cases} \mod \mathcal{O}(\operatorname{dist}(x, y)^{\infty}).$$

For x = y:

$$\frac{\partial \psi}{\partial x} = \frac{\partial \phi}{\partial x}, \ \frac{\partial \psi}{\partial \overline{x}} = -\frac{\partial \phi}{\partial \overline{x}}, \ \frac{\partial \psi}{\partial y} = -\frac{\partial \phi}{\partial x}, \ \frac{\partial \psi}{\partial \overline{y}} = \frac{\partial \phi}{\partial \overline{x}}.$$

2. Historical remarks.

Most of the earlier results concern the positively curved case $n_{-}=0$. G.Tian [Ti], followed by W.Ruan [Ru] and Z.Lu [Lu], computed increasingly many terms of the asymptotic expansion on the diagonal, using Tian's method of peak solutions. T. Bouche [Bou] also got the leading term using heat kernels.

S.Zelditch [Ze], D.Catlin [Ca] established the complete asymptotic expansion at x=y by using a result of Boutet de Monvel, Sjöstrand [BoSj] for the asymptotics of the Szegö kernel on a strictly pseudoconvex boundary (after the pioneering work of C.Fefferman [Fe]), here on the boundary of the unit disc bundle, and a reduction idea of Boutet de Monvel, Guillemin [BoSj]. Scaling asymptotics away from the diagonal was obtained later

^{*} as follows from Hörmander's $L^2 - \overline{\partial}$ estimates [Hö].

by P.Bleher, B.Shiffman, Zelditch [BlShZe] and the full asymptotics by L. Charles [Ch], using again the reduction method.

In more general situations, full asymptotic expansions on the diagonal and in some sense away from the diagonal were obtained by X.Dai, K.Liu, X.Ma [DaLiMa] (see also [MaMar] for related spectral results).

Without a positive curvature assumption there are fewer results. J.M.Bismut [Bi] used the heat kernel method in his approach to Demailly's holomorphic Morse inequalities. X. Ma has pointed out to us that the method and results of [DaLiMa] can be extended to the case of non-positive holomorphic line bundles by using a spectral gap estimate from [MaMar].

3. Quick outline of a proof when $q = n_{-} = 0$ ([BeBeSj])

Locally, the problem is essentially to find the orthogonal projection from $L^2(\mathbf{C}^n, e^{-2\phi/h}m(dx))$ to its subspace of holomorphic functions. That projection was recently constructed in [MeSj3], and the method we present here is similar but differs on one essential point: A square root procedure is replaced by a simpler algorithm. Write for $u \in L^2_\phi \cap \text{Hol}$:

$$1u(x) = \frac{1}{(2\pi h)^n} \iint_{\Gamma(x)} e^{\frac{i}{h}(x-y)\theta} u(y) dy d\theta$$

$$\equiv \frac{1}{(2\pi h)^n} \iint_{\Gamma(x)} e^{\frac{i}{h}(x-y)\theta} a(x,y,\theta;h) u(y) dy d\theta$$
(3.1)

modulo an error $\mathcal{O}(h^{\infty})$, provided that the symbol $a \sim \sum_{j=0}^{\infty} a_{j}h^{j}$ (is almost holomorphic at a suitable set and) satisfies

$$\sum_{\alpha \in \mathbf{N}^n} \frac{h^{|\alpha|}}{\alpha!} (\partial_{\theta}^{\alpha} D_y^{\alpha} a(x, y, \theta; h))_{y=x} \sim 1.$$
 (3.2)

Let $\Psi(x,y)$, M(x,y) be almost holomorphic with $\Psi(x,\overline{x}) = \phi(x)$, $M(x,\overline{x}) = m(x)$. Recall that in the case $n_- = 0$, ϕ is strictly plurisubharmonic and we have

$$-\phi(x) + 2\operatorname{Re}\Psi(x,\overline{y}) - \phi(y) \sim -|x-y|^2.$$

Consider

$$Ju(x) =$$

$$\iint e^{\frac{2}{h}(\Psi(x,w) - \Psi(y,w))} c(x,w;h) M(y,w) u(y) \frac{dydw}{h^n}$$

$$= \iint e^{\frac{2}{h}\Psi(x,\overline{y})} c(x,\overline{y};h) u(y) e^{-\frac{2}{h}\phi(y)} m(y) \frac{dyd\overline{y}}{h^n}$$
(3.3)

where we integrate over $w = \overline{y}$ in the first integral.

Use the Kuranishi trick:

$$2(\Psi(x,w) - \Psi(y,w)) = i(x-y) \cdot \theta(x,y,w),$$

$$Ju(x) = \iint e^{\frac{i}{h}(x-y)\cdot\theta} a(x,y,\theta;h) u(y) \frac{dyd\theta}{(2\pi h)^n},$$

$$a(x,y,\theta;h) = (2\pi)^n \frac{c(x,w(x,y,\theta);h) M(y,w(x,y,\theta))}{\det(\frac{\partial \theta}{\partial w})}.$$

Here the coefficients c_0 , c_1 , ... in the asymptotic expansion of c can be determined successively so that (3.2) holds.

4. Outline of the proof for general n_{-} ([BeSj])

We shall use the heat equation approach of [MeSj] with a Witten complex trick. Work locally with

$$\Delta_{q,\text{loc}} = Z_{\phi}^* Z_{\phi} + Z_{\phi} Z_{\phi}^*.$$

Let $x_1, ..., x_{2n}$ be local coordinates. Construct a parametrix $U_q(t; h)$ for

$$(h\partial_t + \Delta_{q,loc})U_q(t) = \mathcal{O}(h^{\infty}), \ U_q(0) = \mathrm{id},$$
 (4.1)

$$U_q(t)u(x) = \iint e^{\frac{i}{h}(\psi(t,x,\eta) - y\eta)} a(t,x,\eta;h)u(y) \frac{dyd\eta}{(2\pi h)^{2n}}.$$
 (4.2)

Here we can solve

$$i\partial_t \psi + p(x, \psi_x') = \mathcal{O}((\operatorname{Im} \psi)^{\infty}),$$

locally with $\psi(0, x, \eta) = x \cdot \eta$ and with $\text{Im } \psi \geq 0$, and more precisely

Im
$$\psi \sim \operatorname{dist}(x, \eta; \Sigma)^2$$
, $t \ge t_0 > 0$,

$$\psi(t, x, \eta) = x \cdot \eta + \mathcal{O}(\operatorname{dist}(x, \eta; \Sigma)^2)$$

(See [MelSj2] and references given there to work of Kucherenko and others.) In [MeSj] a more detailed study was given, using that Σ is symplectic, and we showed that there exists a limiting function $\psi(\infty, x, \eta)$ such that

$$\partial_{t,x,\eta}^{\alpha}(\psi(t,x,\eta) - \psi(\infty,x,\eta)) = \mathcal{O}_{\alpha}(1)e^{-\frac{t}{C}},\tag{4.3}$$

for $t \geq 0$, $(x, \eta) \in \Sigma$. As used in [MeSj1,2], J_{\pm} can be viewed as the stable outgoing and incoming manifolds for the $i^{-1}H_p$ flow around the fixed point variety $\Sigma^{\mathbf{C}}$, and the canonical transformation κ_t generated by $\psi(t, \cdot, \cdot, \cdot)$ converges to the limiting canonical relation κ_{∞} characterized by saying that $(\rho, \mu) \in \operatorname{graph}(\kappa_{\infty})$ if $\rho \in J_+$, $\mu \in J_-$ belong to bicharacteristics leaves of J_+ , J_- respectively, containing the same point of $\Sigma^{\mathbf{C}}$.

The symbol

$$a(t, x, \eta; h) \sim \sum_{0}^{\infty} a_j(t, x, \eta) h^j,$$

is determined by a sequence of transport equations, and adapting the approach of [MeSj1] to the case of matrix-valued symbols, we get on Σ :

$$\partial_{t,x,\eta}^{\alpha} a_j = \begin{cases} \mathcal{O}_{\alpha,j}(1)e^{-t/C}, & q \neq n_-\\ \mathcal{O}_{\epsilon,\alpha,j}(1)e^{\epsilon t}, & \forall \epsilon > 0, & q = n_-. \end{cases}$$

$$(4.4)$$

Now, let $q = n_{-}$ and apply a Witten trick: From

$$\Delta_{q+1,\text{loc}} Z_{\phi} = Z_{\phi} \Delta_{q,\text{loc}}, \quad \Delta_{q-1,\text{loc}} Z_{\phi}^* = Z_{\phi}^* \Delta_{q,\text{loc}},$$

we get

$$(h\partial_t + \Delta_{q-1,\text{loc}}) Z_\phi^* U_q(t) = \mathcal{O}(h^\infty),$$

$$(h\partial_t + \Delta_{q+1,\text{loc}}) Z_\phi U_q(t) = \mathcal{O}(h^\infty).$$

Here $Z_{\phi}U_q$, $Z_{\phi}^*U_q$ have the general form (4.2) and since $q-1 \neq n_- \neq q+1$, one can show that the symbols satisfy the same decay estimate as in the first case in (4.4).

This also applies to

$$\Delta_{q,\text{loc}}U_q = Z_{\phi}(Z_{\phi}^*U_q) + Z_{\phi}^*(Z_{\phi}U_q),$$

and by (4.1) to

$$h\frac{\partial U_q(t)}{\partial t}u = \iint e^{\frac{i}{h}(\psi(t,x,\eta)-y\eta)} \left(i\frac{\partial \psi}{\partial t}a + h\frac{\partial a}{\partial t}\right)u(y)\frac{dyd\eta}{(2\pi h)^{2n}}.$$

This and (4.3) imply

Modulo $\mathcal{O}(h^{\infty})$:

$$\partial_{t,x,\eta}^{\alpha} \partial_t a_j = \mathcal{O}(1)e^{-t/C}, \ (x,\eta) \in \Sigma.$$

Hence, there exists a symbol $a_i(\infty, x, \eta)$ such that on Σ :

$$\partial_{t,x,\eta}^{\alpha}(a_j(t,x,\eta) - a_j(\infty,x,\eta)) = \mathcal{O}(e^{-t/C}).$$

We get the approximate null-projection:

$$\begin{split} \Pi_{q,\text{loc}}^{\approx} u(x) &= \iint e^{\frac{i}{h}(\psi(\infty,x,\eta) - y\eta)} a(\infty,x,\eta;h) u(y) \frac{dyd\eta}{(2\pi h)^{2n}} \\ &= \int e^{\frac{1}{h}\psi_{\text{new}}(x,y)} b(x,y;h) u(y) \frac{m(dy)}{h^n} + Ru, \end{split}$$

where the last equality follows from complex stationary phase ([MelSj]) and the last expression is as in the theorem.

The remaining part is more routine. We get:

$$U_{q}(t) = \Pi_{q,\text{loc}}^{\approx} + V_{q}(t),$$

$$V_{q}(t) = \mathcal{O}(e^{-t/C}) : H_{\text{comp}}^{-\infty} \to H_{\text{loc}}^{\infty}, \ t \ge t_{0} > 0.$$

$$\Delta_{q,\text{loc}} \Pi_{q,\text{loc}}^{\approx} \equiv \Pi_{q,\text{loc}}^{\approx} \Delta_{q,\text{loc}} \equiv 0,$$

$$(\Pi_{q,\text{loc}}^{\approx})^{*} \equiv \Pi_{q,\text{loc}}^{\approx},$$

$$[\Pi_{q,\text{loc}}^{\approx}, V(t)] = \mathcal{O}(e^{-t/C}h^{\infty}).$$

Approximate resolvent for Re $z < (2C)^{-1}$, $|z| \ge h^{N_0}$:

$$R_{\text{loc}}^{\approx}(hz) = \frac{1}{hz} \Pi_{q,\text{loc}}^{\approx} - \frac{1}{h} \int_{0}^{\infty} e^{tz} V_{q}(t) dt.$$

(When $q \neq n_-$, we have the simpler formula for Re $z < (2C)^{-1}$:

$$R_{\text{loc}}^{\approx}(hz) = -\frac{1}{h} \int_{0}^{\infty} e^{tz} U_{q}(t) dt.$$

Notice that,

$$\Pi_{q,\text{loc}}^{\approx} = \frac{-1}{2\pi i} \int_{|z|=r} R_{\text{loc}}^{\approx}(z) dz, \ h^{N_0} \le r \le \frac{h}{2C}.$$

Back to the global situation, we glue the different R_{loc}^{\approx} together and get $R^{\approx}(z)$: $H^s(X) \to H^s(X)$ such that for $\text{Re}\, z < (2C)^{-1}$, $|z| \ge h^{N_0}$:

$$(\Delta_q - hz)R^{\approx}(hz) \equiv R^{\approx}(hz)(\Delta_q - hz) \equiv id, \tag{4.5}$$

which implies that

$$(\Delta_q - hz)^{-1} \equiv R^{\approx}(hz),$$

$$\Pi_q = \frac{1}{2\pi i} \int_{|z|=r} (z - \Delta_q)^{-1} dz \equiv \frac{-1}{2\pi i} \int_{|z|=r} R^{\approx}(z) dz$$

...

#

Bibliography

[BeBeSj] B. Berndtsson, R. Berman, J. Sjöstrand, In preparation.

[BeSj] R. Berman, J. Sjöstrand, In preparation.

[Be] R. Berman, Bergman kernels and local holomorphic Morse inequalities, Math. Z. 248(2)(2004), 325–344.

[Bi] J.M. Bismut, Demailly's asymptotic Morse inequalities, a heat equation proof, J. Funct. Anal., 72(1987), 263–278.

[BlShZe] P. Bleher, B. Shiffman, S. Zelditch, Universality and scaling of correlations between zeros on complex manifolds, Invent. Math. 142(2)(2000), 351–395.

[Bou] T. Bouche, Convergence de la métrique de Fubini Study d'un fibré linéaire positif, Ann. Inst. Fourier, 40(1)(1990), 117-130.

[BoGu] L. Boutet de Monvel, V. Guillemin, *The spectral theory of Toeplitz operators*, Annals of Mathematics Studies, 99. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1981.

[BoSj] L. Boutet de Monvel, J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegö, Astérisque 34-35 (1976), 123-164.

[Ca] D. Catlin, The Bergman kernel and a theorem of Tian, Analysis and geometry in several complex variables (Katata, 1997), 1–23, Trends in Math. Birkhäuser, Boston, MA, 1999.

- [Ch] L. Charles, Berezin-Toeplitz operators, a semi-classical approach, CMP 239(2003),1–28.
- [DaLiMa] X. Dai, K. Liu, X. Ma, On the asymptotic expansion of Bergman kernel, Preprint and CRAS 339(2004), 193–198.
- [DiSj] M. Dimassi, J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Math. Soc Lecture Notes Series 268, Cambridge Univ. Press 1999.
- [Fe] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26(1974), 1–65.
- [Hö] L. Hörmander, An introduction to complex analysis in several variables, van Nostrand, (1966), 1967.
- [Lu] Z. Lu, On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch, Am. J. Math., 122(2)(2000), 235–273.
- [LuTi] Z. Lu, G. Tian, The log term of Szegö kernel, Duke Math. J. 125(2)(2004), 351-387.
- [MaMar] X. Ma, Marinescu, The spin^c Dirac operator on high tensor powers of a line bundle, Math. Z. 240(3)(2002), 651–664.
- [MelSj] A. Melin, J. Sjöstrand, Fourier integral operators with complex valued phase functions, Springer LNM, 459.
- [MelSj2] A. Melin, J. Sjöstrand, Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem, CPDE, 1(4)(1976), 313–400.
- [MelSj3] A. Melin, J. Sjöstrand, Determinants of pseudodifferential operators and complex deformations of phase space, Methods and Appl. of Anal. 9(2)(2002), 177–238.
- [MeSj1] A. Menikoff, J. Sjöstrand, On the eigenvalues of a class of hypoelliptic operators, Math. Ann. 235(1978), 55–85.
- [MeSj2] A. Menikoff, J. Sjöstrand, The eigenvalues of hypoelliptic operators III, the non-semibounded case, J. d'Analyse Math. 35(1979), 123–150.
- [Ru] W. Ruan, Canonical coordinates and Bergman metrics, Comm. Anal. Geom., 6(1998), 589-631.
- [Ti] G. Tian, On a set of polarized Kähler metrics, J. Diff. Geom., 32(1990), 99–130.
- [We] R.O. Wells, Differential analysis on complex manifolds, Graduate texts in mathematics 65, Springer 1980
- [Ze] S. Zelditch, Szegö kernels and a theorem of Tian, IMRN 1998(6), 317–331.