@article{SEDP_2005-2006____A1_0, author = {Dencker, Nils}, title = {On the solvability of pseudodifferential operators}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:1}, pages = {1--27}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2005-2006}, mrnumber = {2276067}, language = {en}, url = {http://archive.numdam.org/item/SEDP_2005-2006____A1_0/} }
TY - JOUR AU - Dencker, Nils TI - On the solvability of pseudodifferential operators JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:1 PY - 2005-2006 SP - 1 EP - 27 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://archive.numdam.org/item/SEDP_2005-2006____A1_0/ LA - en ID - SEDP_2005-2006____A1_0 ER -
%0 Journal Article %A Dencker, Nils %T On the solvability of pseudodifferential operators %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:1 %D 2005-2006 %P 1-27 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://archive.numdam.org/item/SEDP_2005-2006____A1_0/ %G en %F SEDP_2005-2006____A1_0
Dencker, Nils. On the solvability of pseudodifferential operators. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2005-2006), Exposé no. 1, 27 p. http://archive.numdam.org/item/SEDP_2005-2006____A1_0/
[1] Beals, R. and C. Fefferman, On local solvability of linear partial differential equations, Ann. of Math. 97 (1973), 482–498. | MR | Zbl
[2] Bony, J.-M. and J.-Y. Chemin, Espaces fonctionnels associés au calcul de Weyl-Hörmander, Bull. Soc. Math. France 122 (1994), 77–118. | Numdam | MR | Zbl
[3] Dencker, N., On the propagation of singularities for pseudo-differential operators of principal type, Ark. Mat. 20 (1982), 23–60. | MR | Zbl
[4] —, The solvability of non solvable operators, Journées “Equations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1996), Exp. No. X, 11 pp., Ecole Polytech., Palaiseau, 1996. | Numdam | Zbl
[5] —, A sufficient condition for solvability, International Mathematics Research Notices 1999:12 (1999), 627–659. | MR | Zbl
[6] —, On the sufficiency of condition , Report 2001:11, Centre for Mathematical Sciences, Lund University.
[7] —, The solvability of pseudo-differential operators, Phase space analysis of partial differential equations, Vol. I, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, 2004, 175–200. | MR | Zbl
[8] —, The resolution of the Nirenberg-Treves conjecture, Ann. of Math. 163 (2006), 405–444. | MR | Zbl
[9] Hörmander, L., The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math. 32 (1979), 359–443. | MR | Zbl
[10] —, Pseudo-differential operators of principal type, Singularities in boundary value problems (Proc. NATO Adv. Study Inst., Maratea, 1980) NATO Adv. Study Inst. Ser. C: Math. Phys. Sci., 65, Reidel, Dordrecht-Boston, Mass., 1981, 69–96. | Zbl
[11] —, The analysis of linear partial differential operators, vol. I–IV, Springer Verlag, Berlin, 1983–1985.
[12] —, Notions of convexity, Birkhäuser, Boston, 1994. | MR
[13] —, On the solvability of pseudodifferential equations, Structure of solutions of differential equations (M. Morimoto and T. Kawai, eds.), World Scientific, New Jersey, 1996, 183–213. | MR | Zbl
[14] —, The proof of the Nirenberg–Treves conjecture according to N. Dencker och N. Lerner, Preprint.
[15] Lerner, N., Sufficiency of condition for local solvability in two dimensions, Ann. of Math. 128 (1988), 243–258. | MR | Zbl
[16] —, Nonsolvability in for a first order operator satisfying condition , Ann. of Math. 139 (1994), 363–393. | MR | Zbl
[17] —, Energy methods via coherent states and advanced pseudo-differential calculus, Multidimensional complex analysis and partial differential equations (P. D. Cordaro, H. Jacobowitz, and S. Gidikin, eds.), Amer. Math. Soc., Providence, R.I., USA, 1997, 177–201. | MR | Zbl
[18] —, Perturbation and energy estimates, Ann. Sci. École Norm. Sup. 31 (1998), 843–886. | Numdam | MR | Zbl
[19] —, The Wick calculus of pseudo-differential operators and some of its applications. Cubo Mat. Educ. 5 (2003), 213–236. | MR
[20] —, Cutting the loss of derivatives for solvability under condition (), Preprint.
[21] Lewy, H. An example of a smooth linear partial differential equation without solution, Ann. of Math. 66 (1957), 155–158. | MR | Zbl
[22] Moyer, R.D., Local solvability in two dimensions: Necessary conditions for the principal-type case, Mimeographed manuscript, University of Kansas, 1978.
[23] Nirenberg, L. and F. Treves, On local solvability of linear partial differential equations. Part I: Necessary conditions, Comm. Pure Appl. Math. 23 (1970), 1–38, Part II: Sufficient conditions, Comm. Pure Appl. Math. 23 (1970), 459–509; Correction, Comm. Pure Appl. Math. 24 (1971), 279–288. | Zbl
[24] Trépreau, J.M., Sur la résolubilité analytique microlocale des opérateurs pseudodifférentiels de type principal, Ph.D. thesis, Université de Reims, 1984.