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Pa r t i e l l e s

2005-2006

Carlos E. Kenig
Some recent quantitative unique continuation theorems
Séminaire É. D. P. (2005-2006), Exposé no XX, 10 p.

<http://sedp.cedram.org/item?id=SEDP_2005-2006____A20_0>

U.M.R. 7640 du C.N.R.S.
F-91128 PALAISEAU CEDEX

Fax : 33 (0)1 69 33 49 49
Tél : 33 (0)1 69 33 49 99

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://sedp.cedram.org/item?id=SEDP_2005-2006____A20_0
http://www.cedram.org/
http://www.cedram.org/


SOME RECENT QUANTITATIVE UNIQUE CONTINUATION

THEOREMS

CARLOS E. KENIG*
DEPARTMENT OF MATHEMATICS

UNIVERSITY OF CHICAGO
CHICAGO, IL 60637

USA

In this note I will survey some recent work on quantitative unique continuation
problems which have had some interesting applications. These results have their
origin in recent work with J. Bourgain [B-K] on Anderson localization for the con-
tinuous Bernoulli model, a well-known problem in the theory of disordered media.
I will start out by describing this work. The problem of localization originates in
a seminal 1958 paper by Anderson [A], who argued that, for a simple Schrödinger
operator in a disordered medium, “at sufficiently low densities, transport does not
take place; the exact wave functions are localized in a small region of space.” In
this work we have concentrated on continuous models; the corresponding issues for
discrete problems remain open. Thus, consider a random Schrödinger operator on
Rn of the form

Hε = −∆ + Vε,

where the potential Vε(x) =
∑

j∈Zn εjϕ(x − j), where εj ∈ {0, 1} are independent,

and 0 ≤ ϕ ≤ 1, ϕ ∈ C∞
0 (B(0, 1/10)). This is commonly referred to as the Anderson-

Bernoulli model. It is not hard to see ([P-F]) that under these assumptions

inf spec Hε = 0 a.s.

In this context, Anderson localization means that, near the bottom of the spec-
trum (i.e. for energies E > 0, E < δ, δ = δ(n) small), Hε has pure point
spectrum with exponentially decaying eigenfunctions, a.s. This phenomenon is
by now well-understood in the case when the random potential Vε has a continuous
site distribution (i.e. the εj take their values in [0, 1]). When n = 1, this was
first proved, for all energies and potentials with a continuous site distribution, by
Gol’dsheid-Molchanov-Pastur ([G-M-P]). The extensions to n > 1, for the same
potentials, were achieved by the use of a method, called “multi-scale analysis”,
developed by Fröhlich-Spencer ([F-S]) and Fröhlich-Martinelli-Scoppola-Spencer
([F-M-S-S]). When the random variables εj are discrete valued (i.e. the Anderson-
Bernoulli model), the result was established for n = 1, using the Furstenberg-Lepage
approach, by Carmona-Klein-Martinelli ([C-K-M]) and by Shubin-Vakilian-Wolff
([S-V-W]), using the so-called supersymmetric formalism. Neither one of these
methods extended to n > 1. We now have:

Theorem 1 (Bourgain-Kenig [B-K]). For energies near the bottom of the spectrum
(0 < E < δ), Hε displays Anderson localization a.s. in ε for n ≥ 1.

*Supported in part by NSF.
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The only previous result when n > 1 was due to Bourgain ([B]), who considered
Vε(x) =

∑

j∈Zn εjϕ(x − j), where now ϕ(x) ∼ exp(−|x|), instead of ϕ ∈ C∞
0 . The

non-vanishing of ϕ as |x| → ∞ was essential in Bourgain’s argument (which also
applied to the corresponding discrete problem). In our work, on the true Bernoulli
model, we overcome this by the use of a quantitative unique continuation result.

The proof of the above Theorem proceeds by an “induction on scales” argument.
We consider the restriction of our operator to a cube of size ` (under Dirichlet
boundary conditions) and establish our estimates by induction in `. The estimates
that we establish are weak versions of the so-called “Wegner estimates” ([We]),
which roughly speaking show that, for a large set of ε, at scale `, we have “good
resolvent estimates” depending favorably on `. The difficulty in proving such an
estimate in the Bernoulli case, as opposed to the case when we have a continuous
site distribution, is that we cannot obtain the estimate by varying a single j at a
time. Here, ‘rare event’ bounds must be obtained by considering the dependence
of eigenvalues on a large collection of variables, {εj}j∈S . In doing this, one of our
key tools is a probabilisitc lemma on Boolean functions, used by Bourgain in his
work [B].

Lemma (Lemma 3.1 in [B-K]). Let f = f(ε1, . . . , εd) be a bounded function on
{0, 1}d and denote Ij = f |εj=1 − f |εj=0, the jth influence, which is a function of

εj′ , j′ 6= j. Let J ⊂ {1, . . . , d} be a subset with |J | ≤ δ−1/4, so that k < |Ij | < δ for
all j ∈ J . Then, for all E,

meas {|f − E| < k/4} ≤ |J |−1/2.

(Here meas refers to normalized counting measure on {0, 1}d). The proof of this
Lemma relies on Sperner’s Lemma in the theory of partially ordered sets (see [Bo],
p. 10).

The function to which this Lemma is applied to is the eigenfunction. It then
becomes critical to find bounds for the jth influence of eigenvalues. One can see
that if ξ is a normalized eigenstate (||ξ||L2 = 1), with eigenvalue E, by first order
eigenvalue variation one has that Ij =

∫

|ξ(x)|2ϕ(x − j) dx. Upper bounds for this
are more or less standard and what is at issue is lower bounds for Ij . Recalling
that (−∆+Vε)(ξ) = Eξ, ||ξ||L2 = 1, we are led to the following quantitative unique
continuation problem at infinity:

Suppose that u is a solution to

∆u + V u = 0 in R
n, with ||V ||∞ ≤ 1,

so that ||u||∞ ≤ C0 and u(0) = 1. Note that by Carleman’s unique continuation
principle ([H]) we know that, for each x0 ∈ Rn, supx∈B(x0,1) |u(x)| > 0. For R
large, define

M(R) = inf
x0=R

sup
B(x0,1)

|u(x)|.

The question that we need to address is:
How small can M(R) be?

Theorem 2 (Bourgain-Kenig [B-K]). Under the above conditions, we have

M(R) ≥ C exp(−CR4/3 log R).
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Remark (See [B-K], Section 5). In order for our induciton on scales argument
to work to prove the weak Wegner estimate, we need an estimate of the form

M(R) ≥ C exp(−CRβ), with β < 1+
√

3
2 = 1.35 . . .. Note that 4/3 = 1.33 . . ..

It turns out that the problem just described in Theorem 2 is a quantiative version
of a conjecture of E. M. Landis ([K-L]): Landis conjectured that if ∆u + V u = 0 in
Rn, with ||V ||∞ ≤ 1, ||u||∞ ≤ C0, and |u(x)| ≤ C exp(−C|x|1+), then u ≡ 0. This
was disproved in 1992 by Meshkov [M] who constructed such V , u, u 6≡ 0, with

|u(x)| ≤ C exp(−C|x|4/3).

(Meshkov also showed that if |u(x)| ≤ C exp(−C|x|4/3+), then u ≡ 0). Meshkov’s
example clearly shows the sharpness of the lower bound on M(R) in Theorem 2.
Nevertheless, in the Meshkov example, u, V are complex valued, while for many
applications, we are only interested in real u, V . We thus pose:

Question 1. Can 4/3 in Theorem 2 be improved to 1 for real-valued u, V ?

We turn to a sketch of the proof of Theorem 2. Our starting point is the following
well-known Carleman inequality (see [H]).

Lemma. There are dimensional constants C1, C2, C3 and an increasing function
w(r), defined for 0 < r < 10, so that

1

C1
≤ w(r)

r
≤ C1

and such that, for all f ∈ C∞
0 (B(0, 10) \ {0}), α > C2 we have

α3

∫

w−1−2α|f |2 ≤ C3

∫

w2−2α|∆f |2.

The classical application of this lemma (see [H]) is to the following unique con-
tinuation result, due to Carleman ([C]).

Proposition. Assume that ∆u = V u in B(0, 10) and that ||u||L∞ ≤ C0, ||V ||L∞ ≤
M . Suppose that |u(x)| ≤ CN |x|N for each N > 0. Then u ≡ 0 in B(0, 10).

It turns out that to prove the Proposition, the power α3 on the left-hand side
of the inequality in the Lemma is not crucial; in fact, any h(α) with h(α) → ∞
as α → ∞ would do. On the other hand, for Theorem 2 the exact power is
crucial and as we will see from the sketch of the proof, the Meshkov example
implies that no higher power than 3 can be used, no matter what the choice of
w is. To sketch the proof of Theorem 2, pick x0, |x0| = R so that M(R) =
supB(x0,1) |u(x)|. We now “interchange 0 and x0” and “rescale to R = 1” by setting

uR(x) = u(AR(x + x0

AR )), where A is a large dimensional constant to be fixed

later. We have |∆uR(x)| ≤ A2R2|uR(x)| and if x̃0 = −x0/AR, then uR(x̃0) = 1,
|x̃0| = 1

A . Moreover, M(R) = sup|x|≤2r0
|uR(x)|, where r0 = 1

2AR . Pick now ρ a

cut-off function, ρ ≡ 0 on |x| < r0

2 , |x| > 4 and ρ ≡ 1 on 2
3r0 < |x| < 3 and apply
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the lemma to f = (uRρ). We obtain:

α3

∫

w−1−2αu2
R ≤ C3

∫

w2−2αρ2|∆uR|2+

+ C3

[

∫

1
2
r0<|x|< 2

3
r0

w2−2α
{

|∆ρ|2|uR|2 + 2|∇ρ|2|∇uR|2
}

]

+

+ C3

[

∫

3<|x|<4|
w2−2α

{

|∆ρ|2|uR|2 + 2|∇ρ|2|∇uR|2
}

]

.

Note that |∆uR|2 ≤ A2R4|uR|2 and hence, if α4 ' R3 we can absorb the first term
on the right-hand side into the left-hand side. The left-hand side can be seen to
be greater than or equal to Cα3A−nR−nw−1−2α(2/A), using that uR(x̃0) = 1 and
interior estimates. The last two terms of the right-hand side are bounded from
above by (CR)2α−n+2M(R)2 and by CC2

0A2w(3)−2−2α, respectively, using interior
estimates. Hence, taking A so large that w( 2

A ) ≤ 1
10w(3) and R large, depending

on n, C0, we obtain

Cα3R−nw−1−2α

(

2

A

)

≤ (CR)2α+2−nM(R)2,

which, since α4 ' R3, gives the desired lower bound.
The arguments we have just sketched can be sharpened to address the following

question: What is the sharp lower bound on the possible rate of vanishing in Carle-
man’s proposition? More precisely, suppose that we are in the following normalized
situation:

Assume ∆u + V u = 0 in B(0, 10), with ||V ||∞ ≤ M , ||u||∞ ≤ C0. Assume
also that sup|x|≤1 |u(x)| ≥ 1. Then, what is the best lower bound for m(r) =

max|x|≤r |u|, of the form m(r) ≥ a1r
a2β , as r → 0, with ai = ai(n, C0) and β =

β(M), M � 1. When V ≡ −M , i.e. we consider eigenvalues, in the setting of
Riemannian manifolds, H. Donnelly and C. Fefferman ([D-F]) showed in 1988 that
β = M1/2. Our arguments show that, for general V , β = M2/3 and moreover, the
Meshkov example can be used to show that for complex valued u, V , this is sharp.
(These observations were made jointly with D. Jerison).

Question 2. Can one take β = M1/2 for real-valued u, V ?

We next turn our attention to parabolic equations. Thus, let us consider solutions
to ∂tu − ∆u + W (x, t) · ∇u + V (x, t)u = 0 in Rn × (0, 1), with ||V ||∞ ≤ M ,
||W ||∞ ≤ N . We will also restrict ourselves to considering bounded solutions, i.e.
||u||L∞ ≤ C0. Then, as is well known (see [E-S-S 1]) for references), we have the
following backward uniqueness result: if u(x, 1) ≡ 0, then u(x, t) ≡ 0, x ∈ Rn, t ∈
(0, 1). Recently (see [E-S-S 2], [E-S-S 3]), Escauriaza-Seregin-Sverak have shown
that in fact, it suffices to have solutions u defined in Rn

+ × (0, 1) = {(x, t) : x =
(x1, . . . , xn), x1 > 0, 0 < t < 1} so that u(x, 1) ≡ 0, x ∈ Rn

+, to reach the
same conclusion. This was a crucial ingredient in their proof (see [E-S-S 3]) that if
−→u solves the Navier-Stokes system in R3 × (0, T ), in the weak sense (Leray-Hopf
solution) and −→u ∈ L∞([0, T ]; L3(R3)), then −→u is smooth in R3 × (0, T ] and unique.
This is an end-point result which generalizes well-known ones due to Leray, Prodi
and Serrin. (See [E-S-S 3] for details.) On the other hand, in 1974, in [L-O], Landis
and Oleinik, in parallel with Landis’ elliptic conjecture, formulated the following:
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Conjecture. Assume that u is as in the backward uniqueness situation, but at
t = 1 we only assume |u(x, 1)| ≤ C exp(−C|x|2+ε), for some ε > 0. Show that
u ≡ 0.

Note that in this evolution situation, the growth rate is clearly optimal (for both
real- and complex-valued solutions). We now have:

Theorem 3 (Escauriaza-Kenig-Ponce-Vega 2005 [E-K-P-V 1]). In the above situ-
ation, if |u(x, 1)| ≤ Ck exp(−k|x|2) for each k, then u ≡ 0. The same conclusion
holds for u defined in Rn

+×(0, 1). Moreover, there are quantitative versions of these
results: for instance, if ||u(−, 1)||L2(B1) > 0, there exists N such that, for |x| > N ,
we have:

||u(−, 1)||L2(B(x,|x|/2)) ≥ exp(−N |x|2) and

||u(−, 1)||L2(B(x,1)) ≥ exp(−N |x|2 log |x|).
Corresponding quantitative results hold in the case of Rn

+ × (0, 1).

The proof of this result is inspired by the one of the elliptic one described before.
The main tools are a rescaling argument and a quantification of the size of the
constants involved in the two-sphere and one-cylinder inequalities (see [E-F-V])
satisfied by solutions of certain parabolic equations, in terms of the L∞ norm of the
lower order coefficients and of the time of existence of solutions. (See [E-K-P-V 1].)

Question 3. Landis and Oleinik ([L-O]) in fact were interested in variable co-
efficient top order terms, i.e. operators of the form ∂tu − ∑

∂xi
aij(x, t)∂xj

u +
W (x, t)∇u + V u, where {aij(x, t)} is uniformly elliptic and symmetric. They ask
for conditions on the local smoothness and the behavior of the coefficients at infin-
ity for the validity of their conjecture. We conjecture that smoothness and growth
conditions of the type |∇(x,t)aij(x, t)| ≤ C

(1+|x|)1+ε suffice for this.

The last topic that we want to discuss here is the possible existence of analogous
results for dispersive equations. Let us consider for example, non-linear Schrödinger
equations, i.e. equations of the form

i∂tu + ∆u + F (u, u)u = 0 in R
n × [0, 1],

where F is a suitable non-linearity. The first thing we would like to discuss is what
is the analog of the backward uniqueness result for parabolic equations which we
have just discussed. The first obstacle in doing this is that Schrödinger equations
are time reversible and so “backward in time” makes no sense. As is usual in the
study of uniqueness questions, we consider first linear Schrödinger equations of the
form i∂tu + ∆u + V (x, t)u = 0 in Rn × [0, 1], for suitable V (x, t), so that in the end
we can let V (x, t) = F (u(x, t)). We first recall the following well-known version of
the uncertainty principle, due to Hardy (see [S-S]): Let f : R → C be such that

f(x) = O(exp(−πAx2)) and such that its Fourier transform f̂(ξ) = O(exp(−πBξ2))
with A, B > 0. Then, if A · B > 1, we must have f ≡ 0. For instance, if |f(x)| ≤
Cε exp(−Cε|x|2+ε) and |f̂(ξ)| ≤ Cε exp(−Cε|ξ|2+ε), for some ε > 0, then f ≡ 0.
(The usual proof of this result uses the theory of analytic functions of exponential
type.) It turns out that this version of the uncertainty principle can be easily
translated into an equivalent formulation for the free Schrödinger equation.

If v solves i∂tv + ∂2
xv = 0 in R × [0, 1], with v(x, 0) = v0(x), then

v(x, t) =
c√
t

∫

ei|x−y|2/4tv0(y) dy
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so that v(x, 1) = cei|x|2/4
∫

e−ixy/2ei|y|2/4v0(y) dy. If we then apply the corollary to

Hardy’s uncertainty principle to f(y) = ei|y|2/4v0(y), we see that if

|v(x, 0)| ≤ Cε exp(−Cε|x|2+ε) and

|v(x, 1)| ≤ Cε exp(−Cε|x|2+ε) for some ε > 0,

we must have v(x, t) ≡ 0. Thus, for time-reversible dispersive equations, the analog
of “backward in time uniqueness” should be “uniqueness from behavior at two
different times”. We are thus interested in such results with “data which is 0 at
infinity” or with “rapidly decaying data” and even in quantitative versions, where
we obtain “lower bounds for all non-zero solutions”.

It turns out that, for the case of “data which is 0 at infinity”, this question has
been studied for some time.

For the one-dimensional cubic Schrödinger equation,

i∂tu + ∂2
xu ∓ |u|2u = 0 in R × [0, 1],

B. Y. Zhang ([Z]) showed that if u ≡ 0 on (−∞, a]×{0, 1}, or on [a, +∞)×{0, 1}, for
some a ∈ R, then u ≡ 0 on R× [0, 1]. His proof used inverse scattering (thus making
it only applicable to the one-dimensional cubic Schrödinger equation) ,exploiting a
non-linear Fourier transform and analyticity. In 2002, Kenig-Ponce-Vega ([K-P-V])
introduced a general method which allowed them to prove the corresponding results
for solutions to i∂tu + ∆u + V (x, t)u = 0 in Rn × [0, 1], n ≥ 1, for a large class of
potentials V . We thus have:

Theorem 4 (Kenig-Ponce-Vega [K-P-V]). If V ∈ L1
tL

∞
x ∩ L∞

loc
and

limR→∞ ||V ||L1
t L∞(|x|>R) = 0 and there exists a strictly convex cone Γ ⊂ R

n and a
y0 ∈ R

n so that

supp u(−, 0) ⊂ y0 + Γ

supp u(−, 1) ⊂ y0 + Γ,

then we must have u ≡ 0 on R
n × [0, 1].

This work was extended by Ionescu-Kenig ([I-K 1]) who considered more general

potentials V and the case when Γ is a half-space. For instance, if V ∈ L
n+2

2

xt (Rn×R)
or more generally, V ∈ Lp

t L
q
x(Rn × [0, 1]) with 2

p + n
q ≤ 2, 1 < p < ∞ (for n = 1,

1 < p ≤ 2) or V ∈ C([0, 1]; Ln/2(Rn)), n ≥ 3, the result holds, with Γ a half-plane.
This work involves some delicate constructions of parametrices and is quite involved
technically.

We next turn to our extension of Hardy’s uncertainty principle to this context,
i.e. the case of “rapidly decaying data”. Here there seems to be no previous
literature on the problem.

Theorem 5 (Escauriaza-Kenig-Ponce-Vega [E-K-P-V 2]). Let u be a solution to
i∂tu + ∆u + V (x, t)u = 0 in Rn × [0, 1], with u ∈ C([0, 1]; H2(Rn)). Assume that
V ∈ L∞(Rn × [0, 1]), ∇xV ∈ L1([0, 1]; L∞(Rn)) and limR→∞ ||V ||L1

t L∞(|x|>R) = 0.

If u0 = u(x, 0) and u1 = u(x, 1) belong to H1(ek|x|2 dx), for each k > 1, then u ≡ 0.

As we will see soon, there actually even is a quantitative version of this result.
The rest of this note will be devoted to a sketch of the proof of Theorem 5. Our
starting point is:
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Lemma (Kenig-Ponce-Vega [K-P-V]). Suppose that u ∈ C([0, 1]; L2(Rn)), H ∈
L1

tL
2
x and ||V ||L1

t L∞

x
≤ ε, where ε = ε(n) is small enough. Suppose that u0(x) =

u(x, 0), u1(x) = u(x, 1) both belong to L2(Rn; e2βx1 dx) and H ∈ L1([0, 1]; L2(e2βx1 dx)).
Then u ∈ C([0, 1]; L2(e2βx1 dx)) and

sup
0≤t≤1

||u(−, t)||L2(e2βx1 dx) ≤ C{||u0||L2(e2βx1 dx)+

+ ||u1||L2(e2βx1 dx) + ||H ||L1([0,1];L2(e2βx1 dx)},
with C independent of β.

The proof of this lemma is quite subtle. If we know a priori that
u ∈ C([0, 1]; L2(e2βx1 dx)), the proof could be carried out by a variant of the energy
method (after conjugation with the weight e2βx1) where we split into frequencies
ξ1 > 0 and ξ1 < 0, performing the time integral from 0 to t or from t to 1, according
to each case. However, since we are not free to prescribe both u0 and u1, we cannot
use a priori estimates. We thus introduce a fixed smooth function ϕ, with ϕ(0) = 0,
ϕ′ non-increasing, ϕ′(r) ≡ 1 for r ≤ 1, ϕ′(r) = 0 for r ≥ 2. We then let, for λ large,
ϕλ(r) = λϕ(r/λ), so that ϕλ(r) ↑ r as λ → ∞. We replace the weight e2βx1 (β > 0)
with e2βϕλ(x1) and prove the analogous estimate for these weights, uniformly in λ,
for λ ≥ C(1 + β6). The point is that all the quantities involved are now a priori
finite.

The price one pays is that, after conjugation with the weight e2βϕλ(x1), the
resulting operators are no longer constant coefficient (as is the case for e2βx1) and
their study presents complications. At this point there are two approaches: in
[K-P-V] one adapts the use of the energy estimates, combined with commutator
estimates and the standard pseudo-differential calculus. The second approach, in
[I-K 1], constructs parametrices for the resulting operators and proves bounds for
them.

With this Lemma as our point of departure, our first step is to deduce from it
further weighted estimates.

Corollary ([E-K-P-V 2]). If we are under the hypothesis of the previous Lemma
and in addition, for some a > 0, α > 1, u0, u1 ∈ L2(ea|x|α dx),
H ∈ L1([0, 1]; L2(ea|x|α dx)), then there exist Cα,n, Cn > 0 such that

sup
0<t<1

∫

|x|>Cα,n

|u(x, t)|2eCna|x|α dx < ∞.

The idea used for the proof of the corollary is as follows: let uR(x, t) = u(x, t)ηR(x),
where ηR(x) = η(x/R) and η ≡ 0 for |x| ≤ 1, η ≡ 1 for |x| ≥ 2. We apply
the Lemma to uR and a choice of β = bRα−1, for suitable b, in each direction
x1, x2, . . . , xn. The corollary then follows readily.

The next step in the proof is to deduce lower bounds for L2 space-time integrals,
in analogy with the elliptic and parabolic situations. These are our “quantitative
lower bounds”.

Theorem 6 ([E-K-P-V 2]). Let u ∈ C([0, 1]; H2(Rn)) solve i∂tu+∆u+V u = 0 in

Rn×[0, 1]. Assume that
∫ 1

0

∫

Rn |u|2+|∇u|2 dx dt ≤ A2 and that
∫

1
2
+ 1

8
1
2
− 1

8

∫

|x|<1
|u|2 dx dt ≥

1, with ||V ||L∞ ≤ L. Then there exists R0 = R0(n, A, L) > 0 and Cn > 0 such that
if R ≥ R0, we have δ(R) ≥ Cn exp(−CnR2), where

δ(R) =
(

∫ 1

0

∫

R−1≤|x|≤R(|u|2 + |∇u|2) dx dt
)1/2

.

XX–7



Once Theorem 6 is proved, applying the Corollary to u and ∇u (which verifies a
similar equation to the one u does) we see that Theorem 6 yields a contradiction.

In order to prove Theorem 6, a key tool is the following Carleman estimate,
which is a variant of the one due to V. Isakov ([I] and also [I-K 2]).

Lemma. Assume that R > 0 and ϕ : [0, 1] → R is a smooth compactly supported
function. Then there exists C = C(n, ||ϕ′||∞, ||ϕ′′||∞) > 0 such that, for all g ∈
C∞

0 (Rn+1) with supp g ⊂ {(x, t) :
∣

∣

x
R + ϕ(t)e1

∣

∣ ≥ 1} and α ≥ CR2, we have

α3/2

R2

∣

∣

∣

∣

∣

∣
eα| x

R
+ϕ(t)e1|2g

∣

∣

∣

∣

∣

∣

L2
≤ C

∣

∣

∣

∣

∣

∣
eα| x

R
+ϕ(t)e1|2(i∂t + ∆)(g)

∣

∣

∣

∣

∣

∣

L2
.

(Here e1 = (1, 0, . . . , 0).)

Proof. We conjugate (i∂t+∆) by the weight eα| x
R

+ϕ(t)e1|2 and split the resulting op-

erator into its Hermitian and its anti-Hermitian parts. Thus, let f = eα| x
R

+ϕ(t)e1|2g,

so that eα| x
R

+ϕ(t)e1|2(i∂t+∆)g = Sαf−4αAαf , where Sα = i∂t+∆+ 4α2

R2

∣

∣

x
R + ϕ(t)e1

∣

∣

2

and Aα = 1
R

(

x
R + ϕe1

)

· ∇ + n
2R2 + iϕ′

2

(

x1

R + ϕ
)

. Thus, S∗
α = Sα, A∗

α = −Aα and
∣

∣

∣

∣

∣

∣
eα| x

R
+ϕ(t)e1|2(i∂t + ∆)(g)

∣

∣

∣

∣

∣

∣

2

L2
= 〈Sαf − 4αAαf, Sαf − 4αAαf〉

≥ −4α〈(SαAα − AαSα)f, f〉 = −4α〈[Sα, Aα]f, f〉.
A calculation shows that

[Sα, Aα] =
2

R2
∆ − 4α2

R4

∣

∣

∣

x

R
+ ϕe1

∣

∣

∣

2

− 1

2

[(

x1

R ϕ

)

ϕ′′ + (ϕ′)2
]

+ 2i
ϕ′

R
∂x1

and
∣

∣

∣

∣

∣

∣
eα| x

R
+ϕ(t)e1|2(i∂t + ∆)g

∣

∣

∣

∣

∣

∣

2

L2
≥ 16α3

R4

∫

∣

∣

∣

x

R
+ ϕ(t)e1

∣

∣

∣

2

|f |2+

+
8α

R2

∫

|∇f |2 + 2α

∫

[
(x1

R
+ ϕ

)

ϕ′′ + (ϕ′)2]|f |2−

− 8αi

R

∫

ϕ′∂x1
ff.

Using our support hypothesis on g, and taking α > CR2, with C = C(n, ||ϕ′||∞, ||ϕ′′||∞)
yields our estimate.

In order to use the Lemma to prove Theorem 6, we choose θR, θ ∈ C∞
0 (Rn),

ϕ ∈ C∞
0 ((0, 1)) so that θR(x) ≡ 1 if |x| < R − 1, θR(x) = 0, |x| ≥ R, θ(x) ≡ 0

when |x| ≤ 1, θ(x) ≡ 1 when |x| ≥ 2, 0 ≤ ϕ ≤ 3, with ϕ ≡ 1 on [12 − 1
8 , 1

2 + 1
8 ],

ϕ ≡ 0 on [0, 1
4 ] ∪ [34 , 1]. We let g(x, t) = θR(x)θ

(

x
R + ϕ(t)e1

)

u(x, t). Note that

supp g ⊂ {
∣

∣

x
R + ϕ(t)e1

∣

∣ ≥ 1}, g(x, t) ≡ 0 if |x| > R and if t ∈ [0, 1
4 ]∪ [34 , 1], |x| ≤ R,

g(x, t) ≡ 0, so that the Lemma applies. Note that g ≡ u in BR−1 × [12 − 1
8 , 1

2 + 1
8 ]

where
∣

∣

x
R + ϕ(t)e1

∣

∣ ≥ 3 − 1 = 2. We have:

(i∂t + ∆ + V )(g) = θ
( x

R
+ ϕe1

)

{2∇θR · ∇u + u∆θR}+

+ θR(x){2R−1∇θ
( x

R
+ ϕe1

)

· ∇u + R−2u∆θ
( x

R
+ ϕe1

)

+

+ iϕ′(t)∂x1
θ
( x

R
+ ϕe1

)

u}.

The first term on the right-hand side is supported in (BR \ BR−1) × [0, 1], where
∣

∣

x
R + ϕe1

∣

∣ ≤ 4. Then second one is supported in {(x, t) : 1 ≤
∣

∣

x
R + ϕe1

∣

∣ ≤ 2}.
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Thus,
∣

∣

∣

∣

∣

∣
e|

x
R

+ϕ(t)e1|2g
∣

∣

∣

∣

∣

∣

2

L
≥ e4α||u||L2(B1×[ 1

2
− 1

8
, 1
2
+ 1

8
]) ≥

≥ e4α,

and by the Lemma,

α3/2

R2

∣

∣

∣

∣

∣

∣
eα| x

R
+ϕ(t)e1|2g

∣

∣

∣

∣

∣

∣

L2(dx dt)
≤ CnL

∣

∣

∣

∣

∣

∣
eα| x

R
+ϕ(t)e1|2g

∣

∣

∣

∣

∣

∣

L2(dx dt)
+

+ Cne16αδ(R) + Cne4αA,

provided α ≥ CnR2. If we choose α = CnR2, for R large we can hide the first term
on the right-hand side in the left-hand side to obtain

Re4α ≤ C̃ne16αδ(R) + C̃ne4αA,

so that R ≤ C̃ne12αδ(R) + C̃nA, and for R large, depending on A, we obtain

R ≤ 2C̃ne12αδ(R), which, since α = CnR2, is the desired result. �

Question 4. Can one obtain sharper versions of Theorem 6, in the spirit of the

uncertainty principle of Hardy. For instance, assume u0 ∈ H1(e−a0|x|2 dx) for a

fixed a0 > 0 and u1 ∈ H1(e−k|x|2 dx) for all k > 0. Prove, for the class of V as in
Theorem 6, that u ≡ 0.

Question 5. Extend the results of Theorem 6 to a more general class of potentials
as in [I-K 1] and add gradient terms as in [I-K 2].
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