@article{SEDP_2005-2006____A21_0, author = {Salort, Delphine}, title = {\'Etude qualitative de l{\textquoteright}\'equation de {Liouville} en g\'eom\'etries courbes.}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:21}, pages = {1--14}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2005-2006}, language = {en}, url = {http://archive.numdam.org/item/SEDP_2005-2006____A21_0/} }
TY - JOUR AU - Salort, Delphine TI - Étude qualitative de l’équation de Liouville en géométries courbes. JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:21 PY - 2005-2006 SP - 1 EP - 14 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://archive.numdam.org/item/SEDP_2005-2006____A21_0/ LA - en ID - SEDP_2005-2006____A21_0 ER -
%0 Journal Article %A Salort, Delphine %T Étude qualitative de l’équation de Liouville en géométries courbes. %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:21 %D 2005-2006 %P 1-14 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://archive.numdam.org/item/SEDP_2005-2006____A21_0/ %G en %F SEDP_2005-2006____A21_0
Salort, Delphine. Étude qualitative de l’équation de Liouville en géométries courbes.. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2005-2006), Exposé no. 21, 14 p. http://archive.numdam.org/item/SEDP_2005-2006____A21_0/
[1] Équations d’ondes quasilinéaires et estimations de Strichartz, Amer. J. Math., Volume 121 (1999) no. 6, pp. 1337-1377 | Zbl
[2] Global existence for the Vlasov-Poisson equation in space variables with small initial data, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 2 (1985) no. 2, pp. 101-118 | Numdam | MR | Zbl
[3] Strichartz estimates for long range perturbation, Preprint
[4] Estimations de Strichartz pour des perturbations à longue portée de l’opérateur de Schrödinger, Séminaire E.D.P de l’Ecole polytechnique (2001-2002)
[5] Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math., Volume 126 (2004) no. 3, pp. 569-605 | MR | Zbl
[6] Estimations de Strichartz pour les équations de transport cinétique, C. R. Acad. Sci. Paris Sér. I Math., Volume 322 (1996) no. 6, pp. 535-540 | MR | Zbl
[7] Maximal functions associated to filtrations, J. Funct. Anal., Volume 179 (2001) no. 2, pp. 409-425 | MR | Zbl
[8] Regularity and propagation of moments in some nonlinear Vlasov systems, Proc. Roy. Soc. Edinburgh Sect. A, Volume 130 (2000) no. 6, pp. 1259-1273 | MR | Zbl
[9] Velocity averaging in for the transport equation, C. R. Math. Acad. Sci. Paris, Volume 334 (2002) no. 7, pp. 557-562 | MR | Zbl
[10] A Strichartz inequality for the Schrödinger equation on nontrapping asymptotically conic manifolds, Comm. Partial Differential Equations, Volume 30 (2005) no. 1-3, pp. 157-205 | MR | Zbl
[11] Propagation of moments and regularity for the -dimensional Vlasov-Poisson system, Invent. Math., Volume 105 (1991) no. 2, pp. 415-430 | MR | Zbl
[12] Lemmes de moments, de moyenne et de dispersion, C. R. Acad. Sci. Paris Sér. I Math., Volume 314 (1992) no. 11, pp. 801-806 | MR | Zbl
[13] Mathematical tools for kinetic equations, Bull. Amer. Math. Soc. (N.S.), Volume 41 (2004) no. 2, p. 205-244 (electronic) | MR | Zbl
[14] Strichartz estimates for Schrödinger equations with variable coefficients, Mém. Soc. Math. Fr. (N.S.) (2005) no. 101-102, pp. vi+208 | Numdam | MR | Zbl
[15] Dispersion and Strichartz estimates for the Liouville equation, Preprint (2005) | MR | Zbl
[16] The Schrödinger equation type with a nonelliptic operator., Soumis. (2005) | Zbl
[17] Weighted dispersion and Strichartz estimates for the Liouville equation in one dimension., Asymptotic Analysis, Volume 47 (2006) no. 1,2, pp. 85-94 | MR | Zbl
[18] Global Strichartz estimates for nontrapping perturbations of the Laplacian, Comm. Partial Differential Equations, Volume 25 (2000) no. 11-12, pp. 2171-2183 | MR | Zbl
[19] Strichartz estimates for a Schrödinger operator with nonsmooth coefficients, Comm. Partial Differential Equations, Volume 27 (2002) no. 7-8, pp. 1337-1372 | MR | Zbl