Corresponding to the wellposedness result [2] for the classical 3-D Navier-Stokes equations with initial data in the scaling invariant Besov space, here we consider a similar problem for the 3-D anisotropic Navier-Stokes equations where the vertical viscosity is zero. In order to do so, we first introduce the Besov-Sobolev type spaces, and Then with initial data in the scaling invariant space we prove the global wellposedness for provided the norm of initial data is small enough compared to the horizontal viscosity. In particular, this result implies the global wellposedness of with high oscillatory initial data.
@article{SEDP_2005-2006____A8_0, author = {Chemin, Jean-Yves and Zhang, Ping}, title = {The role of oscillations in the global wellposedness of the {3-D} incompressible anisotropic {Navier-Stokes} equations}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:8}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2005-2006}, mrnumber = {2276074}, language = {en}, url = {http://archive.numdam.org/item/SEDP_2005-2006____A8_0/} }
TY - JOUR AU - Chemin, Jean-Yves AU - Zhang, Ping TI - The role of oscillations in the global wellposedness of the 3-D incompressible anisotropic Navier-Stokes equations JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:8 PY - 2005-2006 DA - 2005-2006/// PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://archive.numdam.org/item/SEDP_2005-2006____A8_0/ UR - https://www.ams.org/mathscinet-getitem?mr=2276074 LA - en ID - SEDP_2005-2006____A8_0 ER -
Chemin, Jean-Yves; Zhang, Ping. The role of oscillations in the global wellposedness of the 3-D incompressible anisotropic Navier-Stokes equations. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2005-2006), Exposé no. 8, 18 p. http://archive.numdam.org/item/SEDP_2005-2006____A8_0/
[1] J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Annales de l’École Normale Supérieure, 14, 1981, pages 209-246. | Numdam | Zbl 0495.35024
[2] M. Cannone, Y. Meyer and F. Planchon, Solutions autosimilaires des équations de Navier-Stokes, Séminaire "Équations aux Dérivées Partielles de l’École Polytechnique", Exposé VIII, 1993–1994. | Numdam | Zbl 0882.35090
[3] J.-Y. Chemin, Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel, Journal d’Analyse Mathématique, 77, 1999, pages 27–50. | Zbl 0938.35125
[4] J.-Y. Chemin, Localization in Fourier space and Navier-Stokes system, Phase Space Analysis of Partial Differential Equations, Proceedings 2004, CRM series, Pisa, pages 53-136. | MR 2144406 | Zbl 1081.35074
[5] J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Basics of Mathematical Geophysics, Preprint of CMLS, École polytechnique, 2004. | MR 2228849
[6] J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Fluids with anisotropic viscosity, Modélisation Mathématique et Analyse Numérique, 34, 2000, pages 315-335. | Numdam | MR 1765662 | Zbl 0954.76012
[7] J.-Y. Chemin and P. Zhang, On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations, to appear in | MR 2300252 | Zbl 1132.35068
[8] T.-M. Fleet, Differential Analysis, Cambridge University Press, 1980. | MR 561908 | Zbl 0442.34002
[9] H. Fujita and T. Kato, On the Navier-Stokes initial value problem I, Archiv for Rational Mechanic Analysis, 16, 1964, pages 269–315. | MR 166499 | Zbl 0126.42301
[10] D. Iftimie, A uniqueness result for the Navier-Stokes equations with vanishing vertical viscosity, SIAM Journal of Mathematical Analysis, 33, 2002, pages 1483–1493. | MR 1920641 | Zbl 1011.35105
[11] H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations. Advances in Mathematics, 157, 2001, pages 22–35. | MR 1808843 | Zbl 0972.35084
[12] M. Paicu, Equation anisotrope de Navier-Stokes dans des espaces critiques, Revista Matematica Iberoamericana, 21, 2005, pages 179–235. | MR 2155019 | Zbl 1110.35060
[13] M. Vishik, Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Annales de l’École Normale Supérieure, 32, 1999, pages 769-812. | Numdam | Zbl 0938.35128