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Controllability of Schrödinger equations

Karine Beauchard

CMLA ENS Cachan

94230 Cachan ∗

Abstract

One considers a quantum particle in a 1D moving infinite square po-
tential well. It is a nonlinear control system in which the state is the
wave function of the particle and the control is the acceleration of the
potential well. One proves the local controllability around any eigenstate,
and the steady state controllability (controllability between eigenstates)
of this control system. In particular, the wave function can be moved
from one eigenstate to another one, exactly and in finite time, by moving
the potential well in a suitable way.

The proof uses moment theory, a Nash-Moser theorem, Coron’s return
method and expansions to the second order.

This article summarizes two works : [4] and a joint work with Jean-
Michel Coron [5].

1 Introduction

1.1 The system

A quantum particle, in a 1D space, is represented by its wave function

φ : R × R → C

(t , z) 7→ φ(t, z).

The physical meaning of |φ(t, z)|2dz is the probability of the particle to be in
the volume dz surrounding the point z at time t. Thus, at any time t, one has

∫

R

|φ(t, z)|2dz = 1.

When the particle is in a potential V (z), its wave function solves the Schrödinger
equation

i~
∂φ

∂t
(t, z) = − ~2

2m

∂2φ

∂z2
(t, z) + V (z)φ(t, z).

Let us consider a particle in an infinite square potential well

V (z) = 0 when z ∈ I := (−1/2, 1/2), V (z) = +∞ when z /∈ I

∗
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which moves in R along time. Up to renormalisation, the wave function solves

i
∂φ

∂t
(t, z) = −1

2

∂2φ

∂z2
(t, z) + V (z −D(t))φ(t, z),

where D(t) is the position of the potential well. The change of independent
variables (t, z) → (t, q) and wave function φ→ ψ, defined by

q := z −D(t),

ψ(t, q) := φ(t, z)ei((D−z)Ḋ− 1
2

R

t

0
Ḋ2),

transforms the previous equation into

(Σ)

{
i∂ψ∂t (t, q) = − 1

2
∂2ψ
∂q2 (t, q) − u(t)qψ(t, q), q ∈ I, t ∈ R+,

ψ(t,±1/2) = 0,

where u := −D̈ is the acceleration of the well (see [20]). This equation gives the
dynamic of the wave function in the moving system of reference. The system
(Σ) is a control system in which

• the state is the wave function ψ of the particle, that, for every t ∈ R+,
belongs to the L2(I,C)-unitary sphere S,

• the control is the acceleration t 7→ u(t) ∈ R of the well.

This control system is nonlinear : it is bilinear with respect to the couple (ψ, u).

1.2 Main results of this article

In order to state the main results of this article, let us introduce the definition
of a solution of (Σ), the definition of a trajectory of (Σ) and few notations.

Definition 1 Let T1, T2 ∈ R with T1 < T2, u : [T1, T2] → R be a continuous
function, ψ0 ∈ H2 ∩H1

0 (I,C)∩S. A function ψ : [T1, T2]× I → C is a solution
of 




i∂ψ∂t (t, q) = − 1
2
∂2ψ
∂q2 (t, q) − u(t)qψ(t, q), q ∈ I, t ∈ R+,

ψ(t,±1/2) = 0,
ψ(T1, q) = ψ0(q), q ∈ I,

(1)

if

• ψ ∈ C0([T1, T2], H
2 ∩H1

0 (I,C)) ∩ C1([T1, T2], L
2(I,C)),

• the first equality of (1) holds in L2(I,C) for every t ∈ [T1, T2],

• the third equality of (1) holds in H2 ∩H1
0 (I,C).

Then, one says that (ψ, u) is a trajectory of the control system (Σ).
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One introduces the operator A defined on

D(A) := (H2 ∩H1
0 )(I,C), by Aϕ := −1

2

d2ϕ

dq2
.

The eigenvectors and eigenvalues of this operator are, for k ∈ N
∗,

ϕk(q) :=

{ √
2 sin(kπq), when k is even,√
2 cos(kπq), when k is odd,

λk := 1
2 (kπ)2.

One calls “eigenstates”the particular solution of the free system (u ≡ 0 in (Σ))

ψk(t, q) := ϕk(q)e
−iλkt

and “ground state”the eigenstate corresponding to k = 1. One introduces the
spaces

Hs
(0)(I,C) := D(As/2)

for s ∈ R∗
+ and the unitary L2(I,C)-sphere

S := {ϕ ∈ L2(I,C); ‖ϕ‖L2(I,C) = 1}.

In [4], one proves the local controllability of the system (Σ) around the
ground state for u ≡ 0. This behavior was conjectured by Rouchon in [20]. The
same result holds with the same proof around any eigenstate.

Theorem 1 Let φ0, φ1 ∈ R. There exist T > 0 and η > 0 such that, for every
ψ0, ψf in S ∩H7

(0)(I,C) satisfying

‖ψ0 − ϕ1e
iφ0‖H7(I,C) < η, ‖ψf − ϕ1e

iφ1‖H7(I,C) < η,

there exists a trajectory (ψ, u) of the control system (Σ) on [0, T ] such that
ψ(0) = ψ0, ψ(T ) = ψf and u ∈ H1

0 ((0, T ),R).

In [5], we study the same physical system, but we control not only the wave
function ψ of the particle but also the positionD and the speed S of the potential
well. Thus, the studied control system is

(Σ0)





i∂ψ∂t (t, q) = − 1
2
∂2ψ
∂q2 (t, q)− < u(t), q > ψ(t, q), q ∈ (−1/2, 1/2), t ∈ R+,

ψ(t,±1/2) = 0,

Ṡ = u,

Ḋ = S,

in which

• the state is (ψ, S,D) ∈ S × R × R

• the control is the real valued function t 7→ u(t).

The main result of [5] is the following one.
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Theorem 2 For every n0, nf ∈ N∗, there exists a time T > 0 and a trajec-
tory (ψ, S,D, u) of (Σ0) on [0, T ] such that (ψ(0), S(0), D(0)) = (ϕn0

, 0, 0),
(ψ(T ), S(T ), D(T )) = (ϕnf

, 0, 0), and u ∈ H1
0 ((0, T ),R).

Therefore, one can change the energy level of the particle by moving the
potential well in a suitable way.

In section 2, one states a previous non controllability result for the system
(Σ), due to Turinici [21], with arguments from Ball Marsden and Slemrod [1].
One explains why a non controllability result and a positive controllability result
can hold simultaneously for the same equation.

Section 3 presents the proof of Theorem 1 in [4]. In subsection 3.1, one
explains why the classical linear test does not work. This is the first difficulty of
this work. Subsection 3.2 presents the strategy developed to solve this difficulty,
it relies on Coron’s return method and quasi-static deformations. In subsections
3.3, 3.4, 3.5 and 3.6, one details the steps of the this strategy. Coron’s return
method needs the local controllability of (Σ) around some trajectory (ψ̃, ũ).
This local controllability is proved thanks to the linear test. Unfortunately, the
classical inverse mapping theorem does not give the conclusion because of a loss
of regularity. This is the second difficulty of this work. One concludes thanks to
the Nash-Moser theorem. Finally, subsection 3.7 contains remarks, conjectures
and open problems dealing with Theorem 1.

Section 4 presents the steps of the proof of Theorem 2 in [5]. This proof
relies on many local controllability results, got thanks to similar arguments as
in section 3. However, an additional difficulty appears, and we use expansions
to the second order.

Finally, others PDEs have the same pathology as (Σ) : they are known to be
not controllable (in some functional spaces) thanks to the argument of [1], but
affirmative controllability results have been proved (in other functional spaces)
with the technic introduced for the study of (Σ). Such results are mentioned in
section 5

2 A previous non controllability result for (Σ)

In [1], Ball, Marsden and Slemrod discuss the controllability of infinite dimen-
sional bilinear control systems of the form

ẇ(t) = Aw(t) + p(t)B(w(t)), (2)

where the state is w and the control is p. Thanks to Baire lemma, they prove
the following non controllability result.

Theorem 3 Let X be a Banach space with dim(X) = +∞. Let A generate a
C0-semi group of bounded linear operators on X and B : X → X be a bounded
linear operator. Let w0 ∈ X be fixed and let w(t; p, w0) denote the unique solu-
tion of (2) for p ∈ L1

loc([0,+∞),R) with w(0) = w0. The set of states accessible
from w0 defined by

S(w0) := {w(t; p, w0); t > 0, p ∈ Lrloc([0,∞),R), r > 1}
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is contained in a countable union of compact subsets of X and, in particular,
has dense complement.

As noticed by Turinici in [21], Theorem 3 shows that, for (Σ), given ψ0 ∈
X := S∩H2

(0)((0, 1),C), the set of ψ(t) in X accessible from the initial condition

ψ0, by using controls u ∈ Lrloc([0,∞),R), r > 1, has dense complement in X .
Thus, the system (Σ) is not controllable in S∩H2

(0)(I,C), with control functions

u in H1
0 ((0, T ),R), T > 0.

However, there is no obstruction for having controllability in other spaces.
For example, Theorem 3 does not apply with

X̃ := H3
(0)(I,C)

instead of X because the operator B, defined by Bϕ := qϕ, does not map X̃
into X̃ . Thus, there is no obstruction for controllability to hold in H3

(0)(I,C)

with controls u ∈ L2
loc

([0,+∞),C).

In this article, one proves local controllability results in H7
(0)(I,C), with

control functions u in H1
0 ((0, T ),R), with T > 0. Thus, the negative result

proved by G. Turinici relies on a choice of functional spaces which does not
allow controllability. In order to state affirmative controllability results, one
must

• either control ψ in H2
(0)(I,C) but with a control functions set larger than

L2((0, T ),R), for example H−1((0, T ),R),

• or control ψ using the control functions set L2((0, T ),R), but in a smaller
space than H2

(0)(I,C), for example H3
(0)(I,C).

3 Local controllability of (Σ) around the ground

state

3.1 Failure of the linear test

A classical approach to get local controllability around a trajectory consists in
proving the controllability of the linearized control system around this trajec-
tory and concluding thanks to an inverse mapping theorem. But this classical
approach does not work : Rouchon proved in [20] that, around any state of
definite energy, the linear tangent approximate system is not controllable.

Indeed, the linearized control system around the eigen state ψk is

(ΣL,k)

{
i∂Ψ
∂t (t, q) = − 1

2
∂2Ψ
∂q2 (t, q) − v(t)qψk(t, q), q ∈ I, t ∈ R+,

Ψ(t,±1/2) = 0,

It is a control system in which

• the state is the function Ψ, that belongs, at any time t to the tangent
space TSψk(t) to the sphere S, at the point ψk(t),
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• the control is the real valued function t 7→ v(t).

The non controllability of (ΣL,k) is clear : if k is odd (resp. even), and if the
initial condition Ψ0 satisfies Ψ0(−x) = −Ψ0(x) (resp. Ψ0(−x) = Ψ0(x)) for
every x ∈ I, then, Ψ(t) has the same parity property for every t, whatever
u is. In particular, one cannot reach any final state Ψf that does not satisfy
Ψf (−x) = −Ψf(x) (resp. Ψf (−x) = Ψf (x)) for every x ∈ I, so (ΣL,k) is not
controllable. Therefore, the main reason why (ΣL,k) is not controllable is

the parity of the eigenvectors of A.

3.2 Strategy : return method and quasi-static deforma-

tions

The proof of Theorem 1 relies on Coron’s return method and quasi-static de-
formations. This method was introduced by Coron in [6] in order to solve a
stabilization problem. It has been used in order to get controllability results for
partial differential equations by Coron in [9], [7], [8], by Coron and Fursikov in
[12], by Fursikov and Imanuvilov in [13], by Glass in [14], [15], and by Horsin
in [17].

This method is in two steps. First, one finds a trajectory (ψ̃, ũ) of the

control system (Σ) such that the linearized control system around (ψ̃, ũ) is
controllable in time T . Then, using an implicit function theorem, one gets the
local controllability in time T of the nonlinear system (Σ) around (ψ̃(0), ψ̃(T )) :

there exist neighborhoods V0 of ψ̃(0) and VT of ψ̃(T ) such that the system (Σ)
can be moved in time T from any point ξ ∈ V0 to any point ζ ∈ VT .

In a second step, given two points ψ0, ψf closed enough to ϕ1e
iφ0 , ϕ1e

iφ1 ,
one proves that the system (Σ) can be moved

- from ψ0 to a point ξ ∈ V0, using quasi-static deformations,

- from one point ζ ∈ VT to ψf , using again quasi-static deformations,

- from ξ to ζ using the local controllability around (ψ̃(0), ψ̃(T )).

The trajectory (ψ̃, ũ) used in [4] is the ground state for a constant accelera-
tion u ≡ γ, γ ∈ R∗,

ψ1,γ(t, q) := ϕ1,γe
−iλ1,γ t.

Here, λ1,γ is the first eigenvalue of the operator Aγ defined on

D(Aγ) := (H2 ∩H1
0 )(I,C), by Aγϕ := −1

2

d2ϕ

dq2
− γqϕ.

and ϕ1,γ is an associated eigenvector.

In section 3.3, one justifies the controllability of the linearized system around
(ψ1,γ , u ≡ γ), for γ ∈ R∗ small enough. Unfortunately, the classical inverse
mapping theorem is not sufficient to conclude the local controllability of (Σ)
around ψ1,γ , because of a loss of regularity in the controllability of the linearized
system. This is explained in section 3.4. One deals with this difficulty by
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applying a Nash-Moser theorem. The local controllability result proved, by
doing this, is stated in section 3.5. In section 3.6, one gives explicitly the
quasi-static deformations used in the second step of the return method. Finally,
in section 3.7, one gives some remarks, open problems and conjectures about
Theorem 1

3.3 Controllability of the linearized system around the

trajectory (ψ1,γ , u ≡ γ)

Let γ 6= 0. The linearized system around (ψ1,γ , u ≡ γ) is

(ΣL,γ)

{
i∂Ψ
∂t (t, q) = − 1

2
∂2Ψ
∂q2 (t, q) − (γ + v)(t)qψ1,γ(t, q), q ∈ I, t ∈ R+,

Ψ(t,±1/2) = 0,

It is a control system in which

• the state is the function Ψ, with, for every t, Ψ(t) ∈ TSψ1,γ(t),

• the control is the real valued function t 7→ v(t).

In [4], one proves the following controllability result for (ΣL,γ).

Proposition 1 There exists γ∗ > 0 such that, for every γ ∈ (−γ∗, γ∗)−{0}, for
every T > 0, the linear system (ΣL,γ) is controllable in H3

(0)(I,C) with control

functions v ∈ L2((0, T ),R).

Proof : Let us introduce the nondecreasing sequence of eigenvalues of Aγ ,
(λn,γ)n∈N∗ and associated orthonormal eigenvectors (ϕn,γ)n∈N∗ . Since (ΣL,γ) is
a linear control system, one can take Ψ(0) = 0. Then, for every n ∈ N∗, one has

< Ψ(t), ϕn >= i < qϕ1,γ , ϕn,γ > e−iλn,γt

∫ t

0

v(t)ei(λn,γ−λ1,γ )τdτ,

where < ., . > denotes the L2(I,C)-scalar product.
Let T > 0 and Ψf ∈ TSψ1,γ(T ). We look for v : [0, T ] → R such that

Ψ(T ) = Ψf . This equality is equivalent to the following trigonometric mo-

ment problem on v,

< Ψf , ϕn > eiλn,γT

ibn,γ
=

∫ T

0

v(τ)ei(λn,γ−λ1,γ )τdτ, ∀n ∈ N
∗, (3)

where bn,γ :=< qϕ1,γ , ϕn,γ >. Thanks to the analyticity of the functions γ 7→
λn,γ and γ 7→ ϕn,γ , one proves the following proposition.

Proposition 2 There exists γ0 > 0 such that, for every γ ∈ (0, γ0] and for
every k ∈ N∗, bk,γ 6= 0.
There exist γ1 > 0 and C > 0 such that, for every γ ∈ (0, γ1] and for every even
integer k > 2,

|bk,γ −
(−1)

k
2
+18k

π2(k2 − 1)2
| < Cγ

k3
,

and for every odd integer k ≥ 3,

|bk,γ − γ
2(−1)

k−1

2 (k2 + 1)

π4k(k2 − 1)2
| < Cγ2

k3
.
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Reasoning as in [18, chap 1.2], with the Ingham inequality of [16], one gets
the existence of a solution v ∈ L2((0, T ),R) to the moment problem (3) as soon

as Ψf ∈ D(A
3/2
γ ) and T > 0. �

The controllability of the linearized system around (ψ1,γ , u ≡ γ) is possible
when γ 6= 0 because the introduction of a parameter γ 6= 0 breaks the

parity properties of the eigenvectors of the operator Aγ .

3.4 The inverse mapping theorem does not work

Unfortunately, the controllability result for the linearized system around (ψ1,γ , u ≡
γ) of Proposition 1 is not sufficient to get the local controllability of the nonlin-
ear system (Σ) around ψ1,γ by applying the classical inverse mapping theorem.
Indeed, the map Φ which associates to any couple of initial condition and con-
trol (ψ0, v) the couple of initial and final conditions (ψ0, ψT ) for the system (Σ)
with u = γ + v, is well defined and of class C1 between the following spaces,

Φ : [S ∩D(A
3/2
γ )] × H1((0, T ),R) → [S ∩D(A

3/2
γ )] × [S ∩D(A

3/2
γ )]

(ψ0 , v) 7→ (ψ0 , ψT ).

Its differential map dΦ(ϕ1,γ , 0) at the point (ϕ1,γ , 0) maps the space

E := [TS(ϕ1,γ) ∩D(A3/2
γ )] ×H1((0, T ),R)

into the space

F := [TS(ψ1,γ(0)) ∩D(A3/2
γ )] × [TS(ψ1,γ(T )) ∩D(A3/2

γ )],

where TS(ξ) is the tangent space to the L2-sphere S at the point ξ. It admits
a right inverse, dΦ(ϕ1,γ , 0)−1, but it does not map F into E : it only maps F
into

[TS(ψ1,γ(0)) ∩D(A3/2
γ )] × L2((0, T ),R).

One looses regularity in the controllability of the linearized system

around (ψ1,γ , u ≡ γ)

3.5 Application of the Nash-Moser theorem

One deals with this loss of regularity by using a Nash-Moser implicit func-

tion theorem adapted from [19] and one gets the following theorem.

Theorem 4 Let T := 4/π. There exists γ∗ > 0 such that, for every γ ∈ (0, γ∗),

there exists η > 0 such that, for every (ψ0, ψT ) ∈ S ∩D(A
7/2
γ ) satisfying

‖ψ0 − ψ1,γ(0)‖H7(I,C) 6 η, ‖ψT − ψ1,γ(T )‖H7(I,C) 6 η,

there exists a trajectory (ψ, u) of the control system (Σ) such that ψ(0) = ψ0,
ψ(T ) = ψT and (u− γ) ∈ H1

0 ((0, T ),R).
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The application of the Nash-Moser is rather technical so we refer to [4] for
the proof of this theorem.

It is at this step of the proof that the regularity assumption H7 appears : in
order to prove the convergence of the Nash iterations, one needs regularity on
the initial and final conditions.

The Nash-Moser theorem is useful because one works on Sobolev spaces.
However, it is perhaps possible to prove a local controllability result for (Σ) by
applying the inverse mapping theorem, but one would need to use other func-
tional spaces.

3.6 Quasi-static deformations

In the second step of the return method, one constructs explicitly, for γ > 0
small enough, trajectories

(ψ, u) : [0, T 1] → H7(I,C) × R

such that

u(0) = 0, u(T 1) = γ, ψ(0) = ϕ1e
iφ0 , ψ(T 1) ∈ D(A

7/2
γ ),

‖ψ(T 1) − ϕ1,γ‖H7 < η/2.

Then, for ψ0 ∈ D(A7/2) closed enough to ϕ1e
iφ0 , the same control moves the

system from ψ0 to ξ which satisfies

ξ ∈ D(A7/2
γ ) and ‖ξ − ϕ1,γ‖H7 < η,

thanks to the continuity with respect to initial conditions. The control used in
this step moves slowly from 0 to γ : one makes quasi-static deformations,
as in [9]. More precisely, one proves the following theorem in [4].

Theorem 5 Let γ0 ∈ R. One considers the solution ψε of the following system





iψ̇ε = − 1
2ψ

′′
ε − γ0f(εt)qψε,

ψε(0) = ϕ1e
iφ0 ,

ψε(t,−1/2) = ψε(t, 1/2) = 0,

where f ∈ C∞([0, 1],R) satisfies f (k)(0) = 0 for every k ∈ N, f(1) = 1, 0 6 f 6

1 and φ0 ∈ [0, 2π). Let (εn)n∈N∗ be defined by

1

εn

∫ 1

0

λ1,γ0f(t)dt = φ0 + 2nπ,

for every n ∈ N∗. There exists γ∗ > 0 such that, for every γ0 ∈ (−γ∗, γ∗), for
every s ∈ N, (ψεn(1/εn))n∈N converges to ϕ1,γ0 in Hs(I,C).

3.7 Remarks, open problems, conjectures

The proof given in [4] gives the controllability of (Σ) in H7 with control func-
tions in H1

0 . The exponent 7 is only technical and related to the application

IX–9



of the Nash-Moser theorem. With the same strategy and another version of
the Nash-Moser theorem (see [3] or [2]), it is now possible to prove the same
theorem with everywhere H7

(0)(I,C) replaced by H5+ε
(0) (I,C), ε > 0.

One conjectures that the optimal results for (Σ) are the local controllability

• in H3 with control functions u ∈ L2,

• in H5 with control functions u ∈ H1
0 ,

• in H7 with control functions u ∈ H2
0 , etc.

Indeed, these are the optimal results for the controllability of the linearized sys-
tem around (ψ1,γ , u ≡ γ).

In theorem 4, one proves the local controllability of (Σ) around ψ1,γ in time
T = 4/π. This assumption is probably only technical too. Since the linearized
system around (ψ1,γ , u ≡ γ) is controllable in any positive time (see Proposition
1), one expects the non linear system to be locally controllable around ψ1,γ also
in any positive time. However, this point is an open problem.

Another interesting question about (Σ) is the existence of a minimal time
for the local controllability around ψ1. An affirmative answer is given in [10],
the value of this minimal time is still open.

4 Steady-state controllability of (Σ)

The main result of [5] is a little bit stronger than Theorem 2. It is the following
one.

Theorem 6 For every n ∈ N∗, there exists ηn > 0 such that, for every n0, nf ∈
N∗, for every (ψ0, S0, D0), (ψf , Sf , Df ) ∈ [S ∩H7

(0)(I,C)] × R × R with

‖ψ0 − ϕn0
‖H7 + |S0| + |D0| < ηn0

, ‖ψf − ϕnf
‖H7 + |Sf | + |Df | < ηnf

,

there exists a time T > 0 and a trajectory (ψ, S,D, u) of (Σ0) on [0, T ], which
satisfies (ψ(0), S(0), D(0)) = (ψ0, S0, D0), (ψ(T ), S(T ), D(T )) = (ψf , Sf , Df )
and u ∈ H1

0 ((0, T ),R).

Theorem 2 is a corollary of this theorem. In the following subsections, one
details the steps of the proof of Theorem 6, in [5].

4.1 Global strategy

Thanks to the reversibility of the control system (Σ0), in order to get Theorem
6, it is sufficient to prove it with nf = n0 + 1. We prove it with n0 = 1 and
nf = 2 to simplify the notations.

First, we prove the local controllability of (Σ0) around the trajectory (Y θ,0,0, u ≡
0) for every θ ∈ [0, 1], where

Y θ,0,0(t) := (ψθ(t), S(t) ≡ 0, D(t) ≡ 0),
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ψθ(t) :=
√

1 − θψ1(t) +
√
θψ2(t) for θ ∈ (0, 1),

Y k,0,0(t) = (ψk+1(t), S(t) ≡ 0, D(t) ≡ 0) for k = 0, 1.

Thus we know that

• there exists an open ball V0 (resp. V1) centered at Y 0,0,0(0) (resp. Y 1,0,0)
such that (Σ0) can be moved in finite time between any two points in V0

(resp. V1),

• for every θ ∈ (0, 1), there exists an open ball Vθ centered at Y θ,0,0(0) such
that (Σ0) can be moved in finite time between any two points in Vθ.

Then, we conclude thanks to a compactness argument : the segment

[Y 0,0,0(0), Y 1,0,0(0)] := {
√
λY 0,0,0(0) +

√
1 − λY 1,0,0(0);λ ∈ [0, 1]}

is compact in S×R×R and covered by ∪06θ61Vθ thus there exists a increasing fi-
nite family (θn)16n6N such that [Y 0,0,0(0), Y 1,0,0(0)] is covered by ∪16n6NVθn

.
We can assume Vθn

∩ Vθn+1
6= ∅ for n = 1, ..., N − 1. Given Y0 ∈ Vθ1 and

Yf ∈ VθN
, we move (Σ0) from Y0 to a point Y1 ∈ Vθ1 ∩ Vθ2 in finite time, from

Y1 to a point Y2 ∈ Vθ2 ∩ Vθ3 in finite time...etc and we reach Yf in finite time.

Now, let us explain the proof of the local controllability of (Σ0) around
Y θ,0,0 for every θ ∈ [0, 1]. The strategy for θ ∈ (0, 1) is different from the one
for θ ∈ {0, 1} but involves the same ideas. In the next section, one details the
case θ ∈ (0, 1) which is the simplest one. One refers to [5] for the case θ ∈ {0, 1}.

4.2 Local controllability of (Σ0) around Y θ,0,0 for θ ∈ (0, 1)

In this subsection, one presents the steps of the proof of the following theorem.

Theorem 7 Let θ ∈ (0, 1). Let T := 4/π. There exists η > 0 such that, for
every (ψ0, S0, D0), (ψf , Sf , Df) ∈ [S ∩H7

(0)(I,C)] × R × R with

‖ψ0 − ψθ(0)‖H7 + |S0| + |D0| < η,

‖ψf − ψθ(T )‖H7 + |Sf | + |Df | < η,

there exists a trajectory (ψ, S,D) of (Σ0) on [0, 2T ] such that

(ψ(0), S(0), D(0)) = (ψ0, S0, D0),

(ψ(2T ), S(2T ), D(2T )) = (ψf , Sf , Df ),

and u ∈ H1
0 ((0, 2T ),R).

4.2.1 Controllability up to codimension one of the linearized system

around Y θ,0,0 for θ ∈ (0, 1)

First, let us notice that the linear test is not sufficient to conclude because the
linearized system around (Y θ,0,0(t), u ≡ 0) is not controllable. Indeed, one has
the following proposition.
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Proposition 3 Let θ ∈ (0, 1).Let T > 0 and (Ψ, s, d) be a trajectory of

(Σlθ)





i∂Ψ
∂t = − 1

2
∂2Ψ
∂q2 − wqψθ,

Ψ(t,±1/2) = 0,
ṡ = w,

ḋ = s.

on [0, T ]. Then, the function

t 7→ =(< Ψ(t),
√

1 − θψ1(t) −
√
θψ2(t) >)

is constant on [0, T ]. Thus, the control system (Σlθ) is not controllable.

Proof : Let us consider the function ξθ(t) :=
√

1 − θψ1(t) −
√
θψ2(t). We

have

i
∂ξθ
∂t

= −1

2

∂2ξθ
∂q2

,

d

dt
(= < Ψ(t), ξθ(t) >) = =(iw < qψθ(t), ξθ(t) >).

The explicit expressions of ψθ and ξθ provide, for every t,

< qψθ(t), ξθ(t) >∈ iR,

which gives the conclusion.
Let T > 0, and Ψ0 ∈ TS(ψθ(0)), Ψf ∈ TS(ψθ(T )). A necessary condition for

the existence of a trajectory of (Σlθ) satisfying Ψ(0) = Ψ0 and Ψ(T ) = Ψf is

=(< Ψf ,
√

1 − θψ1(T ) −
√
θψ2(T ) >) = =(< Ψ0,

√
1 − θϕ1 −

√
θϕ2 >).

This equality does not happen for an arbitrary choice of Ψ0 and Ψf . Thus (Σlθ)
is not controllable.�

However, the previous proposition provides the only invariant quantity for
the linear system (Σlθ). Indeed, one has the following proposition.

Proposition 4 Let θ ∈ (0, 1). Let T > 0, (Ψ0, s0, d0), (Ψf , sf , df ) ∈ H3
(0)(I,R)×

R × R be such that

< < Ψ0, ψθ(0) >= < < Ψf , ψθ(T ) >= 0, (4)

= < Ψf ,
√

1 − θϕ1e
−iλ1T −

√
θϕ2e

−iλ2T >= = < Ψ0,
√

1 − θϕ1−
√
θϕ2 > . (5)

There exists w ∈ L2((0, T ),R) such that the solution of (Σlθ) with control w
and such that (Ψ(0), s(0), d(0)) = (Ψ0, s0, d0) satisfies (Ψ(T ), s(T ), d(T )) =
(Ψf , sf , df ).

Remark 1 The condition (5) means that we miss exactly two directions, which
are (Ψ, s, d) = (±iξθ, 0, 0). Thus, if we want to control the components <
Ψ, ϕk > for k > 2 and < < Ψ, ϕ1 > then, we cannot control = < Ψ, ϕ1 >.
This is why we say that we miss the two directions (Ψ, s, d) = (±iϕ1, 0, 0). We
call this situation “controllability up to codimension one”.
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4.2.2 Local controllability up to codimension one of (Σ0) around

Y θ,0,0 for θ ∈ (0, 1)

Let us introduce the following closed subspace of L2(I,C)

V := Span{ϕk; k > 2}

and the orthogonal projection P : L2(I,C) → V .

We want to get from the previous proposition the local controllability up to
codimension one of the nonlinear system (Σ0) around Y θ,0,0. Again, because of
a loss of regularity, the inverse mapping theorem is not sufficient to conclude
and we use a Nash-Moser theorem. Since we need a continuity property in the
end of the proof of Theorem 7, which is not given in [19], we adapt the theorem
and the proof of [19]. By doing this, we get the following theorem.

Theorem 8 Let θ ∈ (0, 1). Let T := 4/π. There exists C > 0, δ > 0 and a
continuous map

Γ : V(0) × V(T ) → H1
0 ((0, T ),R)

((ψ0, S0, D0) , (ψ̃f , Sf , Df )) 7→ u

where

V(0) := {(ψ0, S0, D0) ∈ [S∩H7
(0)(I,C)]×R×R; ‖ψ0−ψθ(0)‖H7+|S0|+|D0| < δ},

V(T ) := {(ψ̃f , Sf , Df ) ∈ [H7
(0)(I,C)∩V ∩BL2(0, 1)]×R×R; ‖ψ̃f−Pψθ(T )‖H7+|Sf |+|Df | < δ},

such that, for every ((ψ0, S0, D0), (ψ̃f , Sf , Df )) ∈ V(0) × V(T ), the trajectory

of (Σ0) with control Γ(ψ0, S0, D0, ψ̃f , Sf , Df ) such that (ψ(0), S(0), D(0)) =
(ψ0, S0, D0) satisfies

(Pψ(T ), S(T ), D(T )) = (ψ̃f , Sf , Df )

and

‖Γ(ψ0, S0, D0, ψ̃f , Sf , Df )‖H1
0
((0,T ),R) 6 C[‖P(ψ0 − ψθ(0))‖H7(I,C) + |S0| + |D0|+

‖ψ̃f − Pψθ(T )‖H7(I,C) + |Sf | + |Df |].

4.2.3 Motion in the directions (ψ, S,D) = (±iϕ1, 0, 0) for the second

order term

In [5], we prove the following proposition, which is the key point to prove that
the nonlinear system (Σ0) can also be moved in the to directions which are not
given by Theorem 8.

Theorem 9 Let θ ∈ (0, 1). Let T := 4/π. There exists w± ∈ H4∩H3
0 ((0, T ),R),

ν± ∈ H3
0 ((0, T ),R) such that the solutions of





iΨ̇± = − 1
2Ψ′′

± − w±qψθ,
Ψ±(0) = 0,
Ψ±(t,−1/2) = Ψ±(t, 1/2) = 0,
ṡ± = w±, s±(0) = 0,

ḋ± = s±, d±(0) = 0,

(6)
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



iξ̇± = − 1
2ξ

′′
± − w±qΨ± − ν±qψθ,

ξ±(0) = 0,
ξ±(t,−1/2) = ξ±(t, 1/2) = 0,
σ̇± = ν±, σ±(0) = 0,

δ̇± = σ±, δ±(0) = 0,

(7)

satisfy Ψ±(T ) = 0, s±(T ) = 0, d±(T ) = 0, ξ±(T ) = ±iϕ1, σ± = 0, δ± = 0.

We detail in the next subsection how this result on the second order term
allows to conclude for the nonlinear system.

This strategy has already been used by Coron and Crepeau in [11], for KdV
equation. In their case, the second order term was not sufficient, they used the
third one.

4.2.4 Proof of Theorem 7

In all this section T := 4/π. Let ρ ∈ R, ψ0, ψf ∈ H7
(0)(I,C), S0, D0, Sf , Df ∈ R.

Let us consider, for t ∈ [0, T ]

u(t) :=
√
|ρ|w + |ρ|ν,

where w := w+, ν := ν+ if ρ > 0 and w := w−, ν := ν− if ρ 6 0 and w±, ν±
are defined in Theorem 9. Let (ψ, S,D) be the solution of (Σ0) on [0, T ] with
control u and such that

(ψ(0), S(0), D(0)) = (ψ0, S0, D0).

Then, we have
S(T ) = S0, D(T ) = D0.

We have u ∈ W 3,1((0, T ),R) and u(0) = u(T ) = u̇(0) = u̇(T ) = 0 thus (see [4,
Appendix B Proposition 51]) the function ψ(T ) belongs to H7

(0)(I,C).

In [5], we prove the following proposition.

Proposition 5 There exists C > 0 such that, for every ρ ∈ (−1, 1), we have

‖ψ(T ) − (ψθ(T ) + iρϕ1)‖H7(I,C) 6 C[‖ψ0 − ψθ(0)‖H7(I,C) + |ρ|3/2].

Now, we use the local controllability up to codimension one around Yθ. Let
δ > 0 be as in Theorem 8. We assume

‖ψ0 − ψθ(0)‖H7(I,C) <
δ

4C ,

|S0| + |D0| <
δ

2
,

‖P [ψf − ψθ(2T )]‖H7 + |Sf | + |Df | < δ.

When ρ satisfies

|ρ| < η := min{1;
δ

4(‖ϕ1‖H7 + C)
},
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the previous proposition proves that

‖ψ(T ) − ψθ(0)‖H7 6 (‖ϕ1‖H7 + C)|ρ|3/2 +
δ

4
<
δ

2
.

Thus (ψ(T ), S0, D0) ∈ V(0) and (Pψf , Sf , Df ) ∈ V(T ). Thanks to Theorem 8,
there exists

ũ := Γ(ψ(T ), S0, D0,Pψf , Sf , Df) ∈ H1
0 ((T, 2T ),R)

such that
(Pψ(2T ), S(2T ), D(2T )) = (Pψf , Sf , Df ),

where (ψ, S,D) is the solution of (Σ0) with control u on [0, 2T ], with u extended
to [0, 2T ] by u := ũ on [T, 2T ]. The Theorem 8 and the previous proposition
give the existence of a constant C such that

‖u‖H1((T,2T ),R) 6 C[|ρ|3/2+‖ψ0−ψθ(0)‖H7+|S0|+|D0|+‖P(ψf−ψθ(2T ))‖H7+|Sf |+|Df |].
(8)

We define the map

F : (−η, η) → R

ρ 7→ =(< ψ(2T ), ϕ1 >).

Thanks to Theorem 8, F is continuous on (−η, η). We can assume δ is small
enough so that

<(< ψ(2T ), ϕ1 >) > 0,

because ψ is closed enough to ψθ. Since ψ ∈ S and <(< ψ(2T ), ϕ1 >) is positive,
we have

ψ(2T ) = ψf if and only if F (ρ) = =(< ψf , ϕ1 >).

Therefore, in order to get Theorem 7, it is sufficient to prove that F is surjective
on a neighborhood of 0.

Let x(t) :=< ψ(t), ϕ1 > on [T, 2T ]. We have

x(2T ) = x(T ) + i

∫ 2T

T

u(t) < qψ(t), ϕ1 > eiλ1tdt.

Thus

F (ρ) = ρ+ [=(x(T )) − ρ] + =
(
i

∫ 2T

T

u(t) < qψ(t), ϕ1 > eiλ1t

)
,

where

|=(x(T )) − ρ| 6 ‖ψ(T )− (ψθ(T ) + iρ)‖L2 6 C[|ρ|3/2 + ‖ψ0 − ψθ(0)‖H7 ],

|
∫ 2T

T

u(t) < qψ(t), ϕ1 > eiλ1tdt| 6 T ‖u‖L∞((T,2T ),R).

Using (8), we get the existence of a constant K such that

|F (ρ)−ρ| 6 K[|ρ|3/2+‖ψ0−ψθ(0)]‖H7+‖P [ψf−ψθ(2T )]‖H7+|Sf |+|Df |+|S0|+|D0|].
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There exists τ ∈ (0, η) such that

K|τ |3/2 < τ

3
.

Let us assume that

K[‖ψ0 − ψθ(0)]‖H7 + ‖P [ψf − ψθ(2T )]‖H7 + |Sf | + |Df | + |S0| + |D0|] <
τ

3
.

Then
F (τ) >

τ

3
and F (−τ) < −τ

3
,

thus the intermediate values theorem guarantees that F is surjective on a neigh-
borhood of zero, this ends the proof of Theorem 7.

4.3 Remark, open problem

Theorem 2 states a steady-state controllability result in long time. No bound for
the time of control is known. The existence of a minimal time for such motions
is an open problem.

5 The same technic on other PDEs

The technic introduced for the study of (Σ) gave positive controllability results
for others PDEs. Note that these PDEs were known to be not controllable in
particular functional spaces, thanks to the argument of [1]. One proves their
controllability in other spaces.

The first PDE is the following 1D beam equation

(P)

{
utt + uxxxx + p(t)uxx = 0, x ∈ (0, 1), t ∈ R+

u(t, .) = ux(t, .) = 0 at x = 0, 1,

in which the state variable is u(t, x) and the control is the function p(t). Thanks
to the Nash-Moser theorem, one proves, in [3], the local controllability of (P)
in H5+ε ×H3+ε((0, 1),R), ε > 0 around reference trajectories of the form

(uref(t, x) := vk(x) sin(
√
λkt) + vk+1(x) sin(

√
λk+1t), u ≡ 0),

where, for every n ∈ N∗,

d4

dx4 vn = λnvn, vn(0) = vn(1) = v′n(0) = v′n(1) = 0.

The second PDE represents a quantum particle in a 1D infinite square po-
tential well with variable length. The state variable is the wave function ψ of
the particle and the control is the length l(t) of the potential. After changes of
variable and wave functions, one works on the equivalent control system

(V)

{
iψ̇ = −ψ′′ + (u̇− u2)x2ψ, x ∈ (0, 1), t ∈ R+,
ψ(t, 0) = ψ(t, 1) = 0,

in which the state is ψ and the control u is subjected to u(0) = u(T ) =∫ T
0 u(t)dt = 0. Thanks to the Nash-Moser theorem and expansion to the second

order, one proves, in [2], local controllability results in H5+ε((0, 1),C) for (V).
Then, a compactness argument provides steady state controllability.
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6 Conclusion

We have proved the local controllability around any eigenstate and the steady-
state controllability of (Σ).

The technic introduced for the study of (Σ) is general enough to be applied
on other equations. Thus, it should also give affirmative controllability results
for the bilinear control systems which are known to be not controllable (in
particular spaces) in the general framework of [1]. This constitutes an open
problem.
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