Effet régularisant pour les solutions de l’équation de Schrödinger dans un domaine extérieur
Séminaire Équations aux dérivées partielles (Polytechnique) (2006-2007), Talk no. 13, 10 p.
@article{SEDP_2006-2007____A13_0,
     author = {Robbiano, Luc and Zuily, Claude},
     title = {Effet r\'egularisant pour les solutions de l'\'equation de Schr\"odinger dans un domaine ext\'erieur},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2006-2007},
     note = {talk:13},
     mrnumber = {2385200},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_2006-2007____A13_0}
}
Robbiano, Luc; Zuily, Claude. Effet régularisant pour les solutions de l’équation de Schrödinger dans un domaine extérieur. Séminaire Équations aux dérivées partielles (Polytechnique) (2006-2007), Talk no. 13, 10 p. http://www.numdam.org/item/SEDP_2006-2007____A13_0/

[B1] Burq N. : Mesures semi classiques et mesures de défaut, Séminaire Bourbaki, Astéristique n 245 (1997), p. 167-195. | Numdam | MR 1627111 | Zbl 0954.35102

[B2] Burq N. : Smoothing Effect for Schrödinger Boundary Value Problems, Duke Math. Journal 123 (2004), 403-427. | MR 2066943 | Zbl 1061.35024

[B3] Burq N. : Semi-classical estimates for the resolvant in non trapping geometries, IMRN n 5 (2002), p. 221-241. | MR 1876933 | Zbl 01719337

[B-G] Burq N., Gérard P. : Condition nécessaire et suffisante pour la controlabilité exacte des ondes, CRAS 325 (1997), 749-752. | MR 1483711 | Zbl 0906.93008

[C-S] Constantin, P., Saut, J-C. : Local smoothing properties of dispersive equations, Journal American Mathematical Society (1988) 413-439. | MR 928265 | Zbl 0667.35061

[Da] Davies E.B., Spectral theory and differential operators, Cambridge studies in advanced mathematics, 42, Cambridge Univers. press | MR 1349825 | Zbl 0893.47004

[D1] Doï, S. : Smoothing effects of Schrödinger evolution group on Riemannian manifolds, Duke Math. J. 82 (1996) 679-706. | MR 1387689 | Zbl 0870.58101

[D2] Doï, S. : Smoothing effects for Schrödinger evolution equation and global behavior of geodesic flow, Math. Ann. 318 (2000) 355-389. | MR 1795567 | Zbl 0969.35029

[D3] Doï, S. : Remarks on the Cauchy problem for Schrödinger type equations, Comm. in pde, 21 (1996) 163-178. | MR 1373768 | Zbl 0853.35025

[D4] Doï, S. : Smoothness of solutions for Schrödinger equations with unbounded potential., Publ.Res.Inst.Math.Sci 41 (2005), 1, 175-221. | MR 2115971 | Zbl 1082.35054

[G-L] Gérard P., Leichtnam E. : Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J. 71 n 2 (1993), p. 559-607. | MR 1233448 | Zbl 0788.35103

[Hö] Hörmander L. : The analysis of Linear Partial Differential Operators I, III, Springer Verlag, Berlin, Heidelberg, New-York (1985). | MR 781537 | Zbl 0601.35001

[K] Kato T. : On the Cauchy problem for the (generalized) KdV equation, Stud. Appl. Math. Adv. Math. Suppl. Stud. 8 (1983) 93-128. | MR 759907 | Zbl 0549.34001

[L] Lebeau G. : Équation des ondes amorties. Algebraic and Geometric methods in math. physics, Math. Phys. Math. Studies, vol. 19, Kluwer Acad. Publ. Dovdrecht (1996), p. 73-109. | MR 1385677 | Zbl 0863.58068

[L-P] Lions P.L., Paul, T. : Sur les mesures de Wigner, Rev. Mat. Iberoamericana 9 (1993) 553-618 | MR 1251718 | Zbl 0801.35117

[M-S] Melrose R.B., Sjöstrand J. : Singularities of boundary value problems I, Comm. Pure Appl. Math 31 n 5 (1978), 593-617. | MR 492794 | Zbl 0368.35020

[Mi] Miller L. : Refraction of high-frequency waves density by sharp interfaces and semi classical measures at the boundary, J. Math. Pures Appl. (9) 79 n 3 (2000), p. 227-269. | MR 1750924 | Zbl 0963.35022

[R-Z] Robbiano L., Zuily C. : Remark on the Kato smoothing effect for Schrödinger equation with superquadratic potentials Preprint.

[S] Sjölin P. : Regularity of solution to the Schrödinger equation, Duke Math. J. 55 (1987) 699-715. | MR 904948 | Zbl 0631.42010

[T] Tartar, Luc : Memory effects and homogenization Arch. Rational Mech. Anal. 111 (1990) 121-133. | MR 1057651 | Zbl 0725.45012

[V] Vega L. : Schrödinger equations, pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988) 874-878. | MR 934859 | Zbl 0654.42014

[Y] Yajima K. : On smoothing property of Schrödinger propagator, Lectures notes in Math. 1450 Springer Verlag (1990) 20-35. | MR 1084599 | Zbl 0725.35084

[Y-Z1] Yajima K., Zhang G.P. : Smoothing property for Schrödinger equations with potential super-quadratic at infinity, Comm. Math. Phys. 221 (2001) 573-590. | MR 1852054 | Zbl 1102.35320

[Y-Z2] Yajima K., Zhang G.P. : Local smoothing property and Strichartz inequality for Schrödinger equations with potential superquadratic at infinity, Journ. Diff. Equ. 202 (2004) 81-110. | MR 2060533 | Zbl 1060.35121