On the collision of two solitons for the generalized KdV equation in the nonintegrable case
Séminaire Équations aux dérivées partielles (Polytechnique) (2007-2008), Talk no. 12, 10 p.
@article{SEDP_2007-2008____A12_0,
     author = {Martel, Yvan and Merle, Frank},
     title = {On the collision of two solitons for the generalized KdV equation in the nonintegrable case},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2007-2008},
     note = {talk:12},
     mrnumber = {2532947},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_2007-2008____A12_0}
}
Martel, Yvan; Merle, Frank. On the collision of two solitons for the generalized KdV equation in the nonintegrable case. Séminaire Équations aux dérivées partielles (Polytechnique) (2007-2008), Talk no. 12, 10 p. http://www.numdam.org/item/SEDP_2007-2008____A12_0/

[1] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82, (1983) 313–345. | MR 695535 | Zbl 0533.35029

[2] J.L. Bona, W.G. Pritchard and L.R. Scott, Solitary-wave interaction, Phys. Fluids 23, 438, (1980). | Zbl 0425.76019

[3] W. Craig, P. Guyenne, J. Hammack, D. Henderson and C. Sulem, Solitary water wave interactions. Phys. Fluids 18, (2006), 057106. | MR 2259317 | Zbl pre05179589

[4] J. C. Eilbeck and G. R.  McGuire, Numerical study of the regularized long-wave equation. II. Interaction of solitary waves, J. Computational Phys. 23 (1977), 63–73. | MR 428922 | Zbl 0361.65100

[5] E. Fermi, J. Pasta and S. Ulam, Studies of nonlinear problems, I, Los Alamos Report LA1940 (1955); reproduced in Nonlinear Wave Motion, A.C. Newell, ed., American Mathematical Society, Providence, R. I., 1974, pp. 143–156. | MR 336014 | Zbl 0353.70028

[6] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27 (1971), 1192–1194.

[7] H. Kalisch and J.L. Bona, Models for internal waves in deep water, Discrete and Continuous Dynamical Systems, 6 (2000), 1–20. | MR 1739590 | Zbl 1021.76006

[8] P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21, (1968) 467–490. | MR 235310 | Zbl 0162.41103

[9] Y. Martel, Asymptotic N–soliton–like solutions of the subcritical and critical generalized Korteweg–de Vries equations, Amer. J. Math. 127 (2005), 1103–1140. | MR 2170139 | Zbl 1090.35158

[10] Y. Martel, Linear problems related to asymptotic stability of solitons of the generalized KdV equations, SIAM J. Math. Anal. 38 (2006), 759–781. | MR 2262941 | Zbl 1126.35055

[11] Y. Martel and F. Merle, Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal. 157 (2001) 219–254. | MR 1826966 | Zbl 0981.35073

[12] Y. Martel and F. Merle, Asymptotic stability of solitons of the subcritical gKdV equations revisited. Nonlinearity 18 (2005), no. 1, 55–80. | MR 2109467 | Zbl 1064.35171

[13] Y. Martel and F. Merle, Asymptotic stability of solitons of the gKdV equations with general nonlinearity. To appear in Math. Annalen. arXiv:0706.1174v2 | MR 2385662 | Zbl pre05267019

[14] Y. Martel and F. Merle, Refined asymptotics around solitons for gKdV equations. To appear in Discrete and Continuous Dynamical Systems. Series A. arXiv:0706.1178v2 | MR 2358258 | Zbl pre05257029

[15] Y. Martel and F. Merle, Description of two soliton collision for the quartic gKdV equations. arXiv:0709.2672v1 | MR 1896235

[16] Y. Martel and F. Merle, Stability of two soliton collision for nonintegrable gKdV equations. arXiv:0709.2677v1

[17] Y. Martel, F. Merle and Tai-Peng Tsai, Stability and asymptotic stability in the energy space of the sum of N solitons for the subcritical gKdV equations, Commun. Math. Phys. 231, (2002) 347–373. | MR 1946336 | Zbl 1017.35098

[18] Y. Martel, F. Merle and T. Mizumachi, preprint. | MR 2109467

[19] R.M. Miura, The Korteweg–de Vries equation: a survey of results, SIAM Review 18, (1976) 412–459. | MR 404890 | Zbl 0333.35021

[20] L.Y. Shih, Soliton–like interaction governed by the generalized Korteweg-de Vries equation, Wave motion 2 (1980), 197–206. | MR 589165 | Zbl 0443.76019

[21] T. Tao, Scattering for the quartic generalised Korteweg-de Vries equation, J. Diff. Eq. 232 (2007), 623–651. | MR 2286393 | Zbl pre05118839

[22] T. Tao, Why solitons are stable ? arXiv:0802.2408v2

[23] M.I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math. 39, (1986) 51–68. | MR 820338 | Zbl 0594.35005

[24] N.J. Zabusky and M.D. Kruskal, Interaction of “solitons” in a collisionless plasma and recurrence of initial states, Phys. Rev. Lett. 15 (1965), 240–243.