Weyl asymptotics for non-self-adjoint operators with small multiplicative random perturbations
Séminaire Équations aux dérivées partielles (Polytechnique) (2007-2008), Talk no. 20, 16 p.

We study the Weyl asymptotics of the distribution of eigenvalues of non-self-adjoint (pseudo)differential operators with small random multiplicative perturbations in arbitrary dimension. We were led to quite essential improvements of many of the probabilistic aspects.

Nous étudions l’asymptotique de Weyl de la distribution des valeurs propres d’opérateurs (pseudo-)différentiels avec des petites perturbations aléatoires multiplicatives en dimension quelconque. Nous avons été amenés à faire des améliorations essentielles des aspects probabilistes.

@article{SEDP_2007-2008____A20_0,
     author = {Sj\"ostrand, Johannes},
     title = {Weyl asymptotics for non-self-adjoint operators with small multiplicative random perturbations},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2007-2008},
     note = {talk:20},
     mrnumber = {2532954},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_2007-2008____A20_0}
}
Sjöstrand, Johannes. Weyl asymptotics for non-self-adjoint operators with small multiplicative random perturbations. Séminaire Équations aux dérivées partielles (Polytechnique) (2007-2008), Talk no. 20, 16 p. http://www.numdam.org/item/SEDP_2007-2008____A20_0/

[1] W. Bordeaux-Montrieux, thèse, en préparation

[2] E.B. Davies, Semi-classical states for non-self-adjoint Schrödinger operators, Comm. Math. Phys. 200(1999), 35–41. | MR 1671904 | Zbl 0921.47060

[3] N.Dencker, J.Sjöstrand, M.Zworski, Pseudospectra of semiclassical (pseudo-) differential operators, Comm. Pure Appl. Math., 57(3)(2004), 384–415. | MR 2020109 | Zbl 1054.35035

[4] M. Dimassi, J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Math. Soc. Lecture Notes Ser., 268, Cambridge Univ. Press, (1999). | MR 1735654 | Zbl 0926.35002

[5] I.C. Gohberg, M.G. Krein, Introduction to the theory of linear non-selfadjoint operators, Translations of mathematical monographs, Vol 18, AMS, Providence, R.I. (1969). | MR 246142 | Zbl 0181.13504

[6] M. Hager, Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints. I. Un modèle, Ann. Fac. Sci. Toulouse Math. (6)15(2)(2006), 243–280. | Numdam | MR 2244217 | Zbl 1131.34057

[7] M. Hager, Instabilité spectrale semiclassique d’opérateurs non-autoadjoints. II. Ann. Henri Poincaré, 7(6)(2006), 1035–1064. | Zbl 1115.81032

[8] M. Hager, J. Sjöstrand, Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators, Math. Annalen, to appear, http://arxiv.org/abs/math/0601381,

[9] A. Melin, J. Sjöstrand, Determinants of pseudodifferential operators and complex deformations of phase space, Methods and Applications of Analysis, 9(2)(2002), 177-238. http://xxx.lanl.gov/abs/math.SP/0111292 | MR 1957486 | Zbl 1082.35176

[10] K. Pravda Starov Etude du pseudo-spectre d’opérateurs non auto-adjoints, thèse Rennes 2006, http://tel.archives-ouvertes.fr/tel-00109895

[11] R.T. Seeley, Complex powers of an elliptic operator. 1967 Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) pp. 288–307, Amer. Math. Soc., Providence, R.I. | MR 237943 | Zbl 0159.15504

[12] J. Sjöstrand, Resonances for bottles and trace formulae, Math. Nachr., 221(2001), 95–149. | MR 1806367 | Zbl 0979.35109

[13] J. Sjöstrand, Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations, http://arxiv.org/abs/0802.3584 .

[14] J. Sjöstrand, M. Zworski, Elementary linear algebra for advanced spectral problems, Ann. Inst. Fourier, 57(7)(2007), 2095-2141. | Numdam | Zbl pre05249481

[15] M. Zworski, A remark on a paper of E.B. Davies, Proc. A.M.S. 129(2001), 2955–2957. | MR 1840099 | Zbl 0981.35107