A survey of some new results in ferromagnetic thin films
Séminaire Équations aux dérivées partielles (Polytechnique) (2007-2008), Talk no. 6, 19 p.
@article{SEDP_2007-2008____A6_0,
     author = {Ignat, Radu},
     title = {A survey of some new results in ferromagnetic thin films},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2007-2008},
     note = {talk:6},
     mrnumber = {2532942},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_2007-2008____A6_0}
}
Ignat, Radu. A survey of some new results in ferromagnetic thin films. Séminaire Équations aux dérivées partielles (Polytechnique) (2007-2008), Talk no. 6, 19 p. http://www.numdam.org/item/SEDP_2007-2008____A6_0/

[1] F. Alouges and S. Labbé, z-invariant micromagnetic configurations in cylindrical domains, preprint.

[2] F. Alouges, T. Rivière and S. Serfaty, Néel and cross-tie wall energies for planar micromagnetic configurations, ESAIM Control Optim. Calc. Var. 8 (2002), 31–68. | Numdam | MR 1932944 | Zbl 1092.82047

[3] L. Ambrosio, C. De Lellis and C. Mantegazza, Line energies for gradient vector fields in the plane, Calc. Var. Partial Differential Equations 9 (1999), 327-355. | MR 1731470 | Zbl 0960.49013

[4] P. Aviles and Y. Giga, A mathematical problem related to the physical theory of liquid crystal configurations, Proc. Centre Math. Anal. Austral. Nat. Univ. 12 (1987), 1–16. | MR 924423

[5] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and their Applications, 13. Birkhäuser Boston, Inc., Boston, MA, 1994. | MR 1269538 | Zbl 0802.35142

[6] R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Vol. 6, Méthodes intégrales et numériques. [Integral and numerical methods], Masson, Paris 1988. | MR 944304 | Zbl 0662.73039

[7] A. DeSimone, H. Knüpfer and F. Otto, 2-d stability of the Néel wall, Calc. Var. Partial Differential Equations 27 (2006), 233-253. | MR 2251994 | Zbl pre05051269

[8] A. Desimone, R. V. Kohn, S. Müller and F. Otto, Magnetic microstructures-a paradigm of multiscale problems, In ICIAM 99 (Edinburgh), pages 175-190. Oxford Univ. Press, Oxford, 2000. | MR 1824443 | Zbl 0991.82038

[9] A. DeSimone, R. V. Kohn, S. Müller and F. Otto, A compactness result in the gradient theory of phase transitions, Proc. Roy. Soc. Edinburgh 131 (2001), 833-844. | MR 1854999 | Zbl 0986.49009

[10] A. Desimone, R. V. Kohn, S. Müller and F. Otto, A reduced theory for thin-film micromagnetics, Comm. Pure Appl. Math. 55 (2002), 1408–1460. | MR 1916988 | Zbl 1027.82042

[11] A. Desimone, R. V. Kohn, S. Müller and F. Otto, Repulsive interaction of Néel walls, and the internal length scale of the cross-tie wall, Multiscale Model. Simul. 1 (2003), 57–104. | MR 1960841 | Zbl 1059.82046

[12] A. DeSimone, R. V. Kohn, S. Müller and F. Otto, Recent analytical developments in micromagnetics, in: Science of Hysteresis, Elsevier, G. Bertotti and I Magyergyoz, Eds., 2005. | Zbl pre05186906

[13] A. DeSimone, R. V. Kohn, S. Müller, F. Otto and R. Schäfer, Two-dimensional modelling of soft ferromagnetic films, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), 2983-2991. | MR 1875089 | Zbl 1065.74028

[14] C.J. García-Cervera, Magnetic domains and magnetic domain walls, Ph.D. thesis, New-York University (1999).

[15] A. Hubert and R. Schäfer, Magnetic domains, Springer, 1998.

[16] R. Ignat, A Γ-convergence result for the Néel wall, preprint.

[17] R. Ignat and F. Otto, A compactness result in thin-film micromagnetics and the optimality of the Néel wall, J. Eur. Math. Soc. (JEMS), to appear.

[18] R. Ignat and F. Otto, Compactness of the Landau state in thin-film micromagnetics, in preparation.

[19] R. L. Jerrard, Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math. Anal. 30 (1999), 721–746. | MR 1684723 | Zbl 0928.35045

[20] W. Jin and R. Kohn, Singular perturbation and the energy of folds. J. Nonlinear Sci. 10 (2000), 355–390. | MR 1752602 | Zbl 0973.49009

[21] F. Lin, Vortex dynamics for the nonlinear wave equation, Comm. Pure Appl. Math. 52 (1999), 737–761. | MR 1676761 | Zbl 0929.35076

[22] C. Melcher, The logarithmic tail of Néel walls, Arch. Ration. Mech. Anal. 168 (2003), 83–113. | MR 1991988 | Zbl pre02021055

[23] C. Melcher, Logarithmic lower bounds for Néel walls, Calc. Var. Partial Differential Equations 21 (2004), 209–219. | MR 2085302 | Zbl 1054.78011

[24] F. Pacard and T. Rivière, Linear and nonlinear aspects of vortices, Progress in Nonlinear Differential Equations and their Applications, 39, Birkhäuser Boston Inc., Boston, MA, 2000. | MR 1763040 | Zbl 0948.35003

[25] R. Riedel and A. Seeger, Micromagnetic treatment of Néel walls, Phys. Stat. Sol. 46, 1971, 377–384.

[26] T. Rivière and S. Serfaty, Limiting domain wall energy for a problem related to micromagnetics, Comm. Pure Appl. Math. 54 (2001), 294–338. | MR 1809740 | Zbl 1031.35142

[27] T. Rivière and S. Serfaty, Compactness, kinetic formulation, and entropies for a problem related to micromagnetics, Comm. Partial Differential Equations 28 (2003), 249–269. | MR 1974456 | Zbl 1094.35125

[28] E. Sandier, Lower bounds for the energy of unit vector fields and applications, J. Funct. Anal. 152 (1998), 379–403. | MR 1607928 | Zbl 0908.58004

[29] H.A.M. van den Berg, Self-consistent domain theory in soft-ferromagnetic media. II, Basic domain structures in thin film objects, J. Appl. Phys. 60 (1986), 1104-1113.