We construct time quasi-periodic solutions and prove almost global existence for the energy supercritical nonlinear Schrödinger equations on the torus in arbitrary dimensions. The main new ingredient is a geometric selection in the Fourier space. This method is applicable to other nonlinear equations.
@article{SEDP_2009-2010____A32_0, author = {Wang, Wei-Min}, title = {Supercritical nonlinear {Schr\"odinger} equations: {Quasi-periodic} solutions and almost global existence}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:32}, pages = {1--18}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2009-2010}, language = {en}, url = {http://archive.numdam.org/item/SEDP_2009-2010____A32_0/} }
TY - JOUR AU - Wang, Wei-Min TI - Supercritical nonlinear Schrödinger equations: Quasi-periodic solutions and almost global existence JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:32 PY - 2009-2010 SP - 1 EP - 18 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://archive.numdam.org/item/SEDP_2009-2010____A32_0/ LA - en ID - SEDP_2009-2010____A32_0 ER -
%0 Journal Article %A Wang, Wei-Min %T Supercritical nonlinear Schrödinger equations: Quasi-periodic solutions and almost global existence %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:32 %D 2009-2010 %P 1-18 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://archive.numdam.org/item/SEDP_2009-2010____A32_0/ %G en %F SEDP_2009-2010____A32_0
Wang, Wei-Min. Supercritical nonlinear Schrödinger equations: Quasi-periodic solutions and almost global existence. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2009-2010), Exposé no. 32, 18 p. http://archive.numdam.org/item/SEDP_2009-2010____A32_0/
[1] D. Bambusi, Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations, Math. Z., 230, 345-387 (1999). | MR | Zbl
[2] D. Bambusi, B. Grébert, Birkhoff normal form for PDE’s with tame modulus, Duke Math. J., 135, 507-567 (2006). | MR | Zbl
[3] J. Bourgain, Fourier transformation restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I: Schrödinger equations, Geom. and Func. Anal., 3, 107-156 emae(1993). | MR | Zbl
[4] J. Bourgain, Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations, Geom. and Func. Anal., 6, 201-230 (1996). | MR | Zbl
[5] J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. of Math., 148, 363-439 (1998). | MR | Zbl
[6] Nonlinear Schrödinger equations J. Bourgain, Park City Lectures, 1999.
[7] J. Bourgain, On diffusion in high-dimensional Hamiltonian systems and PDE, J. Anal. Math, 80, 1-35 (2000). | MR | Zbl
[8] J. Bourgain, Green’s function estimates for latttice Schrödinger operators and applications, Ann. of Math. Studies, 158 (2005), Princeton University Press. | MR | Zbl
[9] J. Bourgain, W.-M. Wang, Quasi-periodic solutions of nonlinear random Schrödinger equations, J. Eur. Math. Soc., 10, 1-45 (2008). | MR | Zbl
[10] R. Carles Semi-classical analysis for nonlinear Schrödinger equations, World Scientific Publishing Co. Pte. Ltd. (2008). | MR | Zbl
[11] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. Math., 181, 39–113 (2010). | MR | Zbl
[12] W. Craig, C. E. Wayne, Newton’s method and periodic solutions of nonlinear equations, Commun. Pure Appl. Math., 46, 1409-1498 (1993). | MR | Zbl
[13] L. H. Eliasson, S. E. Kuksin, KAM for the nonlinear Schrödinger equation, Ann. of Math, 172, no. 1, 371-435 (2010). | MR | Zbl
[14] J. Fröhlich, T. Spencer, Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Commun. Math. Phys., 88, 151-184 (1983). | MR | Zbl
[15] J. Geng, X. Xu, J. You, An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation, preprint (2009). | MR
[16] S. Kuksin, J. Pöschel, Invariant Cantor manifolds of quasi-periodic osillations for a nonlinear Schrödinger equation, Ann. of Math., 143, 149-179 (1996). | MR | Zbl
[17] I. Schur, Uber Potenzreihen, die im Innern des Einheitskreises beschrankt sind, I, J. Reine Angew. Math., 147, 205-232 (1917).
[18] I. Schur, Uber Potenzreihen, die im Innern des Einheitskreises beschrankt sind, II, J. Reine Angew. Math., 148, 122-145 (1918).
[19] W.-M. Wang, Bounded Sobolev norms for linear Schrödinger equations under resonant perturbations, J. Func. Anal., 254, 2926-2946 (2008). | MR | Zbl
[20] W.-M. Wang, Eigenfunction localization for the 2D periodic Schrödinger operator, Int. Math. Res. Notices (2010). | MR | Zbl
[21] W.-M. Wang, Supercritical nonlinear Schrödinger equations I : Quasi-periodic solutions, Arxiv: 1007.0154 (2010).
[22] W.-M. Wang, Supercritical nonlinear Schrödinger equations II : Almost global existence, Arxiv: 1007.0156 (2010).
[23] W.-M. Wang, Spectral methods in PDE, Milan J. Math., 78, no. 2 (2010). | MR | Zbl