@article{SE_1958-1960__2__A13_0, author = {Cairns, S. S.}, title = {Sur la triangulation des vari\'et\'es}, journal = {S\'eminaire de topologie et g\'eom\'etrie diff\'erentielle}, note = {talk:13}, pages = {1--6}, publisher = {Secr\'etariat math\'ematique}, volume = {2}, year = {1958-1960}, zbl = {0128.41006}, language = {fr}, url = {http://archive.numdam.org/item/SE_1958-1960__2__A13_0/} }
TY - JOUR AU - Cairns, S. S. TI - Sur la triangulation des variétés JO - Séminaire de topologie et géométrie différentielle N1 - talk:13 PY - 1958-1960 SP - 1 EP - 6 VL - 2 PB - Secrétariat mathématique UR - http://archive.numdam.org/item/SE_1958-1960__2__A13_0/ LA - fr ID - SE_1958-1960__2__A13_0 ER -
Cairns, S. S. Sur la triangulation des variétés. Séminaire de topologie et géométrie différentielle, Tome 2 (1958-1960), Exposé no. 13, 6 p. http://archive.numdam.org/item/SE_1958-1960__2__A13_0/
[ 1] An alternative proof that 3-manifolds can be triangulated, Annals of Math. 69 (1959). | MR | Zbl
,[ 2] On the triangulation of regular loci, Annals of Math. 35 (1934). | JFM | Zbl
,[ 3] Triangulation of the manifold of class one, Bull. Amer. Math. Soc. 41 (1935). | Zbl
,[ 4] The generalized theorem of Stokes, Trans. Amer. Math. Soc. 40 (1936) | MR | Zbl
,[ 5] Homeomorphisms between topological manifolds and analytic manifolds, Annals of Math. 41 (1940). | JFM | MR | Zbl
,[6] Potential theory (Springer, 1929).
,[ 7] On manifolds homeomorphic to the 7 - sphere, Annals of Math. 64 (1956). | MR | Zbl
,[8] Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung, Annals of Math. 56 (1952). | MR | Zbl
,[9] The triangulation of locally triangulable spaces, Acta. Math. 97 (1957). | MR | Zbl
,[10] Funktionentheorie (Teubner, 1912).
,[11] Les classes caractéristiques de Pontrjagin des variétés triangulées, Topologia algebraica, Mexico (1958). (Proceedings of symposium). | MR | Zbl
,[12] On C'-complexes, Annals of Math. 41 (1940). | JFM | MR | Zbl
,[13] Manifolds with transverse fields in euclidean space, Chicago (1959). (polycopié ).
,[14] Differentiable Manifolds, Annals of Math. 37 (1936). | JFM | Zbl
,[15] Geometric Integration Theory, (Princeton University Press, (1957). | Zbl
,