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A simple case of a complex extension in the complexifi cation of the real number

space ~~ : if R" is embedded in ~~ as real part, can be called a complex exten sion

of Rn. In what follows, this notion is generalized to the class of analytic manifolds.

Given a real analytic manifold M which is enumerable at infinity, we construct a complex
manifold N containing M as its «real part. with respect to a certain subatlas f3 of N.

The pair is called a complex extension of M.

This exposition is complementary to the author’s published work on this subject [ 9] .
For other proofs of the existence theorem the reader is referred to Haefliger [ 6] ,

Morrey [7] and Bruhat and Whitney [ 2]. Haefliger’s proof, which appears on page 296 of

his thesis, is similar to the author’s original proof.

This existence theorem is the first lemma in the theorem that a real-analytic manifold

(enumerable at infinity) can be analytically embedded in a number space R~’~ ~ ~~ = 
The compact case was proved by Morrey (loc. cit,,), and Grauert proved the general
result [ ~ ] . It is shown at the en.d of the exposition that the results of Grauert and

Morrey can be used to strengthen the complex extension existence theorem.

1. Extension of local automorphisms. If f maps a subset of a set A onto a subset of B,
it is convenient to denote the subsets by U(f) and V(f), respectively, so f is the ontomap-

ping f i U(f) ~ V(f). We compose in the class of such mappings by the law ( f, g) -*/g =
( {) which is defined whenever and are subsets of the

same set (the conventional mappings between empty subsets are included in the class).
Note that ~( g ~ ~ _ but the class does not form a category for the units are not unique.

Let A~ be the pseudogroup of analytic, regular, automorphisms between open sets
of R~ and let ~~1~ be the corresponding complex-analytic pseudogroup of ~~ (4 p. 139).
We define :
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Each member is called a complex extension of its restriction to R~ (which may

be the conventional mapping defined on the empty subset).

PROPERTY 1. a pseudogroup of automorphisms of en. This follows immediately
from the definition and the fact that 1B: is a pseudogroup.

PROPERTY 2. The germ of complex extension is unique : that is, if 81 and g 2 com-

plex extensions of f~ 03C9n, then g1 and 82 coincide on some neighbourhood of U(f).
They in fact, coincide on those components n C~ ~g ~~ which are connected

to because analytic functions defined of connected open sets are uniquely deter-

mined by their power series at one point ([ 1] p. 33).

PROPERTY 3. Any f has a complex extension (and therefore infinitely many).
This can be proved directly by putting complex values in the power series which

define f locally and by using property 2. However, it will be seen that this property

is a corollary to proposition 2 (b) which is proved below.

2. Extensions of monifolds : Definition.

Let M be a real analytic manifold defined by a complete atlas a of M on Rn compa-
tible with ([4] p. 139). A complex extension is a pair is a

complex manifold which contains M as a subset and where {3 is a preferred subatlas of N

compatible and complete with respect to A~ such that the set tl1 of restrictions of mem-
bers of f3 to R ~ is a subatlas of U , jt will be shown later 

The submanifold M can be called the real part of (N, and it is characterized by

properties that it is an analytic, proper, closed, real, submanifold and that

dim. M = complex dim. N ([9] p. 193).

3. Extensions of mappings in manifolds. From now on the manifold M is assumed to be

enumerable at infinity.

THEOREM 1. If G is a sheaf (espace dale, [6]. p. 255) defined on a manifold A and

if G (M) is the restriction of G to a proper submanifold M of A, then any section y of 
can be extended to a section  of G over some neighbourhood in A.

PROOF. The existence of y implies that each point x of M has an open neighbourhood

Ux in A and a section ~~ over U in G such that the germ at each point of Ux n M
is the value of y at that point. This implies that x and y for x, y of M ’ coincide on
some neighbourhood of U n M. We seek a family U , j}j~j of open sets Uj of
A and sections over them j such that :

(a) 1 . covers M.

(b) There is a mapping f : / -* M such that and j is the restriction of 
(c) Each ~‘~ only intersects a finite number of others.

(d) UjO M = M) for all j of J.
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We confine attention to some neighbourhood of M in M which is enumerable
x~M

at infinity. This neighbourhood can be covered by a refinement J of the covering

} such that (~~, (h~ and (c~ are satisfied when ~~ is defined {[S] p. 4, theorem 1).

n M has an open neighbourhood in Uj which satisfies (d) so we can replace

~~ by this neighbourhood.
For each pair of J, let be the subset of Uk on which j and k coin-

cide and let V, == (U. - Uj ~ Uk) ~ Ujk " Ve show that Vjk is a neighbourhood of

U. n M in A. By (d), it follows that Uj - Uj ~ Uk is a neighbourhood of Uk)
in t~. Also, since~~ and are restrictions af and the set an which 

coincide is a neighbourhood if M. This implies that there are

no points in this neighbourhood on which and k are both defined but unequal, so

is a neighbourhood of U n It follows that Vjk is a neighbourhood of

M in A.

Finally, we define

Since the intersection is finite, V is an open neighbourhood of Uj n M. The restrictions
of ~1 define a section of G over U ) V and the theorem is proved.

An example of the use ot theorem 1, is the following proposition which generalizes
the fundamental theorem of Differential Geometry (the implicit function theorem).

It is valid for any differentiability class including and the complex-analytic
case.

PROPOSITION 1: If A and A’ are manifolds of class cr and dimension n and if 8 iS

a c’ mapping of A inot A’ which maps a proper submanifold M of A regularly and properly
and which has Jacobian of rank n at points of M, then there is a neighbourhood N of M
~r~ A mapped regularly by ~.

PROOF. The set of points of A on which the Jacobian has rank n is an open neighbour-
hood B of M in /t. The space of germs of g on B is isomorphic to B under the projection
a and forms a sheaf by the projection ~ . The fundamental theorem gives
that g is locally regular on B and thus that ~ ~~~ is an open neighbourhood 
Since is regular, the germs of g form a unique section y over By theorem 1,
this gives a section ~ over some open neighbourhood ~~~ in ~ ~~~. The mapping

is an inverse of g so the proposition is proved.
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PROPOSITION 2. Complex extension of analytic mappings. 
.

Suppose (~, ~) and (N’, are complex extensions of M and ;~’ respectively and

suppose f is an analytic mapping of M into M~, Then f can be extended to give a

complex-analytic mapping g of some neighbourhood of M into N’ and further :

(a) if f is locally-regular, the extension g can be chosen locally-regular,
(b) if f is a regular isomorphism between M and M’, gcan be chosen regular.

PROOF. Let G be the sheaf of germs of complex-analytic mappings of N into N’. Since

f can be extended locally to a neighbourhood of any point of M by putting complex values

in the power series which define f referred to coordinate systems of 03B2 and 6’ it follows

that f defines a section y over M in G (M). Theorem 1 gives an extension g of y which
defines a complex extension g of f .

(a) Let G be the sheaf of germs of locally-regular complex-analytic mappings, the

section y is defined by f because the complex Jacobian of a local extension at a point
of M is the same as the real jacobian of f,

(b) This is an immediate consequence of (a) and pro psition 1.

Two important corollaries to proposition 2 (b) are :

COROLLARY. In the de f inition of a complex extension U1 = : that is, any member

of a can be extended to one o f 03B2.

THEOREM 2. Uniquences. If Nand N’ are complex extensions of the same manifold M,
then there exist neighbourhoods of M in N and N’ which are isomorphic, the manifold M

being left pointwise invariant by the isomorphism.

4. ~°° Extensions. Let r : C ~ -* be the mapping defined by r(x + = 

for Rn X R~), As a generalization of the pseudogroup of complex exten-

sions, we define the pseudogroup r of ~°° extensions of A as the subset of which

is classified by :

(a) each g of r satisfies g R~ ~) A~ = R X ;();

(b) the derivative of g at points of R preserves the isomorphism 2,...., A ,(~0,....0~ ~
~~,~,".,, 0, A~A ~,.... ~1~ ) of tangent vectors of R~ onto a transversal plane of tangent
vectors.

The verification that r is a pseudogroup is straight-forward. Also, if g is any c~

mapping defined on a neighbourhood of U(f) in R 2n where f ,~ g f, and,
if g satisfies (b), then the Jacobian determinant of g is the square of the jacobian
determinant of f, so proposition 1 gives some restriction of g which belongs tor .

Any member f of À can be extended to give a member ~’_. Consider, in fact, the

mapping g of L’f/) x Rn onto V( f) X Rn given by the 2n functions
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Then g is a member of r which extends ~~ It will be noted that the extensions of the

are exactly those which define the tangent bundle structure on an analytic
manifold. The tangent bundle T(M) of ,M admits a complete atlas ~3~ compatible with r
and the restrictions of members of ~3~ to R" form the analytic atlas N of M.

We have the following proposition which is akin to saying that the sheaf of germs
of COO extensions of A03C9nis fine.

PROPOSITION 3. g1 0393 is an extension and. if C is a

relatively-compact open set of then there is extension g of f which

coincides with g ~ in some neighbourhood of C ir~ ~~.

PROOF. Let C1 be a relatively-compact open neighbourhood of C in R~. Then

there exits a ~° function p on U(f) which takes its values in the closed unit interval

taking the value 1 in C and the value 0 outside Ci (8. p. 4 Lemma to theorem 1). Ve

define p on U( f) X R~ by letting it be independent of the last n variables. Consider

the mapping defined by

where go is the extension of / defined int the preceding section. Then g is defined

and of class COO on some neighbourhood of in Both go and 81 give f when

restricted to R ~ so g does also. Differentiate g,

so,

Both 81 and g~ satisfy the derivative condition (b) on R~, so g does also. It follows

from proposition 1 and the remarks of the last section that a restriction of g is a ~

extension of f. This proves proposition 3.

5. Existence Theorem.

THEOREM 3 : EXISTENCE THEOREM. Any real.analytic mani which is enume-

rable at infinity admits a complex extension which is isomorphic to a neighbourhood

of M in ~~e tangent bundle.

Consider the pseudogroup r (A~) of defined as the image of ~~ under the mapping
r : C" ** defined above. The r image of the isomorphism obtained by multiplying
real tangent vectors to R" is exactly the one in condition (b) forr, ansince
(a) is also is a snb-pseudogroup of r. Hence, for the proof of the theorem,
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if T(M) is the tangent bundle space of ~~ with its complete atlas ~r compatible withr ,
we seek a neighbourhood N of M in T(M) and an atlas j6* of N in ~~~ compatible with

and subordinate to Let G be the sheaf of germs of structures on com-

patible with ~(Af) and subordinate to By theorem 1, the proof of theorem 3 reduces

to showing that there is a section over M in the restricted sheaf G(M).

LEMMA, If a is a section of G(M) over an open set U(a) o j M, if f is a coordinate map-

ping of M, and, i j U’ and Y‘ are relatively compact open sets of U(a) and Y( j) respecti-

vely, then there is a section 03B2 of G(M) over U’ ~ Y‘ which coincides with a on fl’.

PROOF 0 F LEMMA. Theorem 1, implies that there exists a complex extension of 

defined by the germs of a. If I’ = n then f’ is an analytic coordinate

mapping for U(a).. It follows from the corollary to theorem 2 that there exists a member g’
of the complex extension atlas which extends f’. Let t be the tangent bundle coordinate

mapping which extends f and let gibe the change of coordinates g’~.. Then, &#x26;tis a mem-

ber ofr defined on some neighbourhood of in and g~ is a COO extension of the

identity mapping of Uf/~). Let C ~- j -s (U’ n V’) which is relatively compact in !7f/’).

By proposition 3, there exists a extension g of the identity mapping of U(f) which

coincides with g in some neighbourhood of C. The coordinate mapping tg defines

a complex extension on some neighbourhood of in T (M) and a section 03B4 over V(f)
in G(M). Then two sections a and 8 coincide on U’ Fl y’~ hence at (~’ and ~~ ’V’define
a section f3 on V’ as required.

PROOF OF THEOREM 3. Since M is enumerable at infinity it admits a countable atlas

{f.11. Z such that each is relatively compact and only intersects a finite number

of others (8, ’ page 4, ’ theorem 1). ° This atlas then admits a refinement Z+ such

that C for all i, ’ and, ’ in fact, ’ we can find an atlas Z+ for each a of

z+ +1001 such that a &#x3E; at implies for all i.. A section 03B3i of G(M) over
is given by the germ of complex extension structure defined by the tangent bundle

extension of / . By the lemma, this can be extended to a section Y2 over V(~~~.
By repeated use of the lemma, we obtain a section y over M.. The required
result is given by theorem 1. if ,~~’

Remarks. The tangent bundle is not indispensible in this proof of the existence theorem.

If A is an analytic manifold containing M as closed, proper, analytic, sub-manifold and

if the normal bundle, realised by an analytic field of transversal vector planes, is analy-

tically isomorphic to the tangent bundle, then the atlas of A has a subatlas compatible
with r and the proof works as before, In particular the product M X M with the diagonal

as submanifotd satisfies the conditions (compare with 3 p. 417)..

What is not apparent from the above proof is whether a manifold A with the above
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conditions admits a neighbourhood of M carrying a complex extension structure subor-

dinate to its analytic structure. This is, in fact, the case, but it would seem to be

a much deeper result for it is a consequence of the Grauert-Morrey embedding theorem.

We can prove the following proposition which is more general :

PROPOSITION 4. If analytic proper sub-Inanifold of an analytic manifold A

and is enumerable at in~~~it~. then a neighbourhood of M in A is analytically isomorphic
to a neighbourbood of M in tbe normal bundle N~ 
PROOF. There is a neighbourhood in A which is enumerable at infinity and which

can be analytically embedded in a euclidean space. Hence, this neighbourhood carries

an analytic Riemannian metric. The tangent vectors of A which are normal to M give
a metric realisation ot the normal bundle N ~ (M). To such a vector, associate a point
of A on the geodesic arc commencing at the origin of the vector in the direction of the

vector, the distance of the point from the origin being given by the magnitude of the

vector. This gives an analytic mapping g of a neighbourhood of M in into A.

Proposition 1 gives that the restriction of g to some neighbourhood of ,M is an isomorphism.
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