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HOLOMORPHIC SEMI-GROUPS

By Kôsaku Yosida (University of Tokyo)

§ 1. The Theorem. Let X be a locally convex, sequentially complete, linear

topological space, and let L(X,X) be the set of all linear continuous mappings

defined on X with values in X ~

A system t ~. 01of mappings Tt E is called an equi-

continuous semi-group of class (CO) if :

(2) lim T,x==T,x for every t. 7, 0 and x e x.2&#x3E; f°r every 4 » ° and x « x,

(3) for every continuous semi-norm p in X~ there exists a continuous

semi-norm q in X such that

We shall prove the following

Theorem , The three propositions (I) (II) and (III) given below are

mutually equivalent

( I ) For every t &#x3E; 0 and

exists, and, for a suitable positive constant C , the system of

mappings

is equi-continuous.
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(II) The Taylor expansion

converges for every xE X and every complex number .B with larg 03BBl tan -1 ( Ce -1 ) ,
-l -1 Ce-1 in such a way that the system of tan 

2 1
is, for a certain k &#x3E; 0 , equi-continuous.

(III) The infinitesimal generator A of T t defined by

satisfies the condition that the resolvent (À1 - A) -1 exists as a mapping

6 L(Xy X) for &#x3E; 0 and the system of mappings

is equi-continuous for a certain positive constant C1 .

§ 2. The Sketch of the froof of the Theorem. We first recall known facts

concerning equi-continuous semi-groups T t of 

The domain D(A) of A is dense in X ; for every l irith &#x3E; 0,

the resolvent (l I - A)-1 exists and E I - A)-1x = 0 e T txdt
for every x 6 X and h with Re( ~, ) &#x3E; 0 ; the system of operators

is equi-continuous ; for every y we have

concerning T(n)= (T (n-1)),, we have the
Lemma. Let Ttx 6 D(A) for every t &#x3E; 0 and x EX. Then T tx is infinitely

differentiable in t and
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Proof. For any t ~ &#x3E; ~ with t &#x3E; t o , 9 we have, by (1) and (4) ,

Hence

We have only to repeat the same reasoning to obtain (5).

of the Theorem

TT , By the equi-continuity of

we obtain, remembering (5),

Hence the first part of (II) is proved.

Next consider the semi-group lstl defined by

Then

Thus remembering that we easily see that

is with a certain k &#x3E; 0 equi-continuous. Hence, as above, we see that e -A T À ’ I
which is an holomorphic extension of St , satisfies the condition that

is equi-continuous.

(II) implies (ill). Differentiating

respect to A , we obtain, for
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Let T 4 0. Then, by Cauchy’s integral theorem, we obtain, for

Hence by the equi-continuity of we have

since we easily see that the second

factor on the right is

We also obtain similar estimate for the case T &#x3E; 0.

Thus (II) implies (III).

( III) implies ( T) . We have, from

the inequality

Thus, if Re ( , the series
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converges and represents the resolvent in such a way that

vrhen BÀ I ~ oo in the domain of the complex X -plane which lies on

the right of a oriented path (see the figure)

such that

We thus can def ine, for

If we are able to show that

then, by

ve obtain

which implies (I).
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We shall l prove (8). To this s purpose, we first prove (9), (10) and (11) : :

for every xo 6 D (A),

for every x e. X and t &#x3E; 0,

( 11 ) t u x is of exponential growth when t T 0* t
(11) is clear from ( 7 ). (10) is proved from

by shifting the path of integration C(s) to the left.
To prove ~9~, we take a h o with Re ( h a) ~ 0 on the right of the

path C 2 ( s ) and take Yo E X such that x0 == { À or-A)-1yo.
Then

The second integral on the right is o as may be seenby shifting the

path of integration C 2 (s) to the left. Hence, by (6)p
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We are now ready to prove (8). Put

Then and Y t is of exponential growth

as tt co, Hence$ for sufficiently large we obtain

by partial integration. But, since every A with Re( h ) &#x3E; 0 is in the resolver

set of A, 1ie must have

sufficiently large.

This proves that Yt = Ot i.e., Tt Xo = Tt Z. for every D(A) . As D(A)
A

is dense in X, we obtain T t = t °

Remark. In the case when X is a Banach space, the equivalence of (II) and

(III) is proved by E. Hille and R. S. Phillips [11. The condition (I) was obser

ved by K. Yosida [1], [2]. The theorem given in the present note is adapted from

K. Yosida [3].

In the case when X is a Banach space, we can construct, from any equi-

continuous semi-group T t of class (0,,) , I a holomorphic semi-group t,o( = T t
as follows K. Yosida [4J, V. Balakrisnan [5] and T. Kato [6] 1 Consider
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Where c~ ~ 0, 0, A &#x3E; 0 and 0~ D ;~ve here take the branch of the

function Z a in such a way that
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