SÉMINAIRE JEAN LERAY. SUR LES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

KÔSAKU YOSIDA Holomorphic semi-groups

Séminaire Jean Leray, nº 2 (1963-1964), p. 68-75

http://www.numdam.org/item?id=SJL_1963-1964___2_68_0

© Séminaire Jean Leray (Collège de France, Paris), 1963-1964, tous droits réservés.

L'accès aux archives de la collection « Séminaire Jean Leray » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

HOLOMORPHIC SEMI-GROUPS

By Kôsaku Yosida (University of Tokyo)

 \S 1. The Theorem. Let X be a locally convex, sequentially complete, linear topological space, and let L(X,X) be the set of all linear continuous mappings defined on X with values in X.

A system $\{T_t; t \ge 0\}$ of mappings $T_t \in L(X,X)$ is called an equicontinuous semi-group of class (C_0) if :

- (1) $T_t T_s = T_{t+s}$, $T_o = I$ (the identity),
- (2) $\lim_{t \to t_a} T_t x = T_t x$ for every $t_0 \ge 0$ and $x \in X$,
- (3) for every continuous semi-norm p in X, there exists a continuous semi-norm q in X such that

$$p(T_{t}x) \leq q(x)$$
 for all $t \geq 0$ and $x \in X$

We shall prove the following

Theorem . The three propositions (I), (II) and (III) given below are mutually equivalent:

(I) For every t>0 and $x\in X$, $T_t'=\lim_{h\to 0}\frac{T_{t+h}-T_t}{h}$ x exists, and, for a suitable positive constant C, the system of mappings

$$\left\{ \left(C \ t \ T_{t}^{\prime}\right)^{n} ; 1 \geqslant t > 0, n = 0, 1, 2, \ldots \right\}$$

is equi-continuous.

(II) The Taylor expansion

$$T_{\lambda} x = \sum_{n=0}^{\infty} \frac{|\lambda - t|^n}{\lfloor n \rfloor} T_{t}^{(n)} x$$

converges for every $x \in X$ and every complex number λ with $|\arg \lambda| < \tan^{-1}(\text{Ce}^{-1})$, in such a way that the system of mappings $\left\{e^{-\lambda}T_{\lambda}; |\arg \lambda| < \tan^{-1}(\frac{\text{Ce}^{-1}}{2^k})\right\}$ is, for a certain k > 0, equi-continuous.

(III) The infinitesimal generator A of T_+ defined by

$$Ax = \lim_{t \downarrow 0} \frac{T_t - I}{t} x$$

satisfies the condition that the resolvent $(\lambda I - A)^{-1}$ exists as a mapping $\in L(X, X)$ for $Re(\lambda) > 0$ and the system of mappings

$$\left\{ \left[C_1 \lambda(\lambda I - A)^{-1} \right]^n ; \operatorname{Re}(\lambda) \geqslant 1, \quad n = 0, 1, 2, \ldots \right\}$$

is equi-continuous for a certain positive constant C_4 .

 \S 2. The Sketch of the Proof of the Theorem. We first recall known facts concerning equi-continuous semi-groups T_t of class (C_o) :

The domain D(A) of A is dense in X; for every λ with Re(λ) > 0, the resolvent $(\lambda I - A)^{-1}$ exists and $\epsilon L(X,X)$; $(\lambda I - A)^{-1}x = \int_0^\infty e^{-\lambda t} T_t x dt$ for every $x \in X$ and λ with Re(λ) > 0; the system of operators

$$\left\{ \left[\sigma (\sigma I - A)^{-1} \right]^m ; \sigma > 0, m = 0, 1, 2, \ldots \right\}$$

is equi-continuous; for every $x \in D(A)$, we have

(4)
$$\frac{dT_t^x}{dt} = AT_t x = T_t Ax, \qquad t \geqslant 0,$$

concerning $T_t^{(n)} = (T_t^{(n-1)})!$, we have the

<u>Lemma</u>. Let $T_t x \in D(A)$ for every t > 0 and $x \in X$. Then $T_t x$ is infinitely differentiable in t and

Kôsaku Yosida "Holomorphic Semi-groups"

$$T_{t}^{(n)} = \left(T_{t/n}^{\dagger}\right)^{n}.$$

Proof. For any $t_o > 0$ with $t > t_o$, we have, by (1) and (4), $T_t^i = AT_t x = T_{t-t_o} AT_{t_o} x .$

Hence

$$T_t^{"x} = T_{t-t_0}^{"x} AT_{t_0}^{x} = AT_{t-t_0}^{x} AT_{t_0}^{x} = AT_{t/2}^{x} AT_{t/2}^{x} = (T_{t/2}^{"x})^2 x$$
.

We have only to repeat the same reasoning to obtain (5).

Proof of the Theorem

(I) implies (II). By the equi-continuity of $\left\{ [CtT_t^i]^n ; n \ge 0, 1 \ge t > 0 \right\}$, we obtain, remembering (5),

$$\mathrm{p}(\frac{|\lambda-t|^n}{\lfloor n} \, \mathrm{T}_t^{(n)} x) \leqslant \frac{|\lambda-t|^n}{t^n} \, \frac{\mathrm{n}^n}{\lfloor n} \, \frac{1}{\mathrm{c}^n} \, \mathrm{p}((\frac{t}{n} \, \mathrm{CT}_t^{\bullet}/\mathrm{n})^n x) \leqslant (\frac{|\lambda-t|}{t} \, \mathrm{C}^{-1} \, \mathrm{e})^n \, \, \mathrm{q}(x) \ .$$

Hence the first part of (II) is proved.

Next consider the semi-group $\left\{ \mathbf{S}_{t}\right\}$ defined by $\mathbf{S}_{t}=\mathbf{e}^{-t}~\mathbf{T}_{t}~.$

Then

$$tS_{t}^{!} = te^{-t} T_{t}^{!} - te^{-t} T_{t}$$
.

Thus remembering that $0 \leqslant te^{-t} \leqslant 1$ for t > 0, we easily see that

$$\{(2^{-k} ts_t^!)^n ; t > 0, n = 0,1,2,...\}$$

is with a certain k>0, equi-continuous. Hence, as above, we see that $e^{-\lambda}T_{\lambda}$, which is an holomorphic extension of S_t , satisfies the condition that $\left\{e^{-\lambda}T_{\lambda};|\arg\lambda|<\tan^{-1}(\frac{Ce^{-1}}{2^k})\right\}$ is equi-continuous.

(II) implies (III). Differentiating $(\lambda I - A)^{-1} = \int_0^\infty e^{-\lambda t} T_t dt$ with respect to λ , we obtain, for $\lambda = \sigma + 1 + iT$ with $\sigma \geqslant 0$,

$$[(\sigma + 1 + iT)(\sigma + 1 + iT)I - A)^{-1}]^{n+1} x$$

$$= \frac{(\sigma + 1 + i\tau)^{n+1}}{\lfloor n \rfloor} \int_{0}^{\infty} e^{-(\sigma + 1 + i\tau)} t^{n} S_{t} xdt , x \in X.$$

Let τ < 0. Then, by Cauchy's integral theorem, we obtain, for $0 < \mathcal{O}_{<} \tan^{-1} \left(\frac{\text{Ce}^{-1}}{2} \right),$

$$\frac{\left(\sigma + 1 + i \tau\right)\left(\left(\sigma + 1 + i \tau\right) I - A\right)^{-1}}{\left[n\right]^{n}} \int_{0}^{\infty} e^{-\left(\sigma + i \tau\right) r e^{i\sigma}} r^{n} s_{r e^{i\sigma}} x e^{i\sigma} dr$$

Hence, by the equi-continuity of $\left\{S_{re} : r > 0\right\}$, we have $\left(\left[(\sigma + 1 + i \top)(\sigma + 1 + i \top) I - A\right]^{-1}\right]^{n+1}x$

p
$$([(\sigma + 1 + i \tau)(\sigma + 1 + i \tau) I - A)^{-1}]^{n+1}x)$$

$$\leq q(x) \cdot \frac{|\sigma+1+i\tau|^{n+1}}{in} \int_{0}^{\infty} e^{(-\sigma\cos\Theta+\tau\sin\Theta)r} r^{n} dr$$

$$= q(x) \cdot \frac{|\sigma+1+i\tau|^{n+1}}{|\tau \sin \Theta - \sigma \cos \Theta|^{n+1}}$$

since $0 < O < \frac{\pi}{2}$, $\tau < 0$ and $\sigma > 0$, we easily see that the second factor on the right is $\leqslant C_1^n$.

We also obtain similar estimate for the case $\tau > 0$.

Thus (II) implies (III).

(III) implies (I). We have, from

$$p\left(\left[C_{1} \lambda_{o}(\lambda_{o} I-A)^{-1}\right]^{n}x\right) \leq q(x) \text{ with Re } (\lambda_{o}) \geqslant 1$$

the inequality

$$P \left(\left[(\lambda - \lambda_0)(\lambda_0 I - A)^{-1} \right]^n x \right) \leqslant \frac{(\lambda - \lambda_0)^n}{c_1^n |\lambda_0|^n} q(x)$$

Thus, if Re
$$(\lambda_0) \geqslant 1$$
 and $\frac{|\lambda - \lambda_0|}{|C_1| |\lambda_0|} < 1$, the series

$$\sum_{n=0}^{\infty} (\lambda_o - \lambda)^n (\lambda_o I - A)^{-(n+1)} x$$

converges and represents the resolvent (λ_o I-A)⁻¹ in such a way that

(6)
$$p((\lambda I-A)^{-1}x) \leqslant (1-\frac{|\lambda-\lambda_0|}{c_1|\lambda_0|})^{-1} q(x) = 0$$
 $\frac{1}{|\lambda|}$

when $|\lambda| \to \infty$ in the domain of the complex λ -plane which lies on the right of a oriented path (see the figure)

$$C_2(s) = \sigma(s) + i \tau(s)$$
 $(-\infty \langle s \rangle)$

such that

$$\lim_{s \uparrow \infty} \tau(s) = \infty , \lim_{s \downarrow -\infty} \tau(s) = -\infty ,$$

$$\lim_{s \uparrow \infty} \frac{\sigma(s)}{\tau(s)} < 0, \quad \lim_{s \downarrow -\infty} \sigma(s) / \tau(s) > 0$$

We thus can define, for t > 0,

(7)
$$\hat{T}_t x = \frac{1}{2 \pi i} \int_{C_2(s)} e^{\lambda t} (\lambda I - A)^{-1} x d\lambda$$

If we are able to show that

(8)
$$\hat{T}_t = T_t$$

then, by

$$T_{t}^{(n)}x = \frac{1}{2 \pi i} \int_{C_{2}(s)} e^{\lambda t} \lambda^{n} (\lambda I-A)^{-1}xd\lambda = (T_{t/n}^{i})^{n}x,$$

we obtain

$$(tT_{t}^{\prime})^{n} = \frac{1}{2 \pi i} \int_{C_{2}(s)} e^{\lambda t} (t \lambda)^{n} (\lambda I-A)^{-1} xd \lambda$$

which implies (I).

We shall prove (8). To this purpose, we first prove (9), (10) and (11):

(9)
$$\lim_{t\downarrow 0} \hat{T}_t x_0 = x_0$$
 for every $x_0 \in D$ (A),

(10)
$$\hat{T}_t^i = A\hat{T}_t^x$$
 for every $x \in X$ and $t > 0$,

(11) $\hat{T}_t x$ is of exponential growth when $t \uparrow \infty$,

(11) is clear from (7). (10) is proved from

$$\hat{T}_{t}^{\prime}x - A\hat{T}_{t}x = \frac{1}{2\pi i} \int_{C_{2}(s)} e^{\lambda t} \left\{ \lambda (\lambda - I - A)^{-1}x - A(\lambda - I - A)^{-1}x \right\} d\lambda$$

$$= \frac{1}{2\pi i} \int_{C_{2}(s)} e^{\lambda t} dt$$

by shifting the path of integration C2(s) to the left.

To prove (9), we take a λ_o with Re (λ_o) > 0 on the right of the path $C_2(s)$ and take $y_o \in X$ such that $x_o = (\lambda_o I - A)^{-1} y_o$.

Then

$$\hat{T}_{t} x_{o} = \hat{T}_{t} (\lambda_{o} I-A)^{-1} y_{o} = \frac{1}{2 \pi i} \int_{C_{2}(s)} e^{\lambda t} (\lambda_{o} I-A)^{-1} (\lambda_{o} I-A)^{-1} y_{o} d\lambda$$

$$= \frac{1}{2 \pi i} \int_{C_{2}(s)} e^{\lambda t} \frac{1}{\lambda_{o} - \lambda} (\lambda_{o} I-A)^{-1} y_{o} d\lambda$$

$$- \frac{1}{2 \pi i} \int_{C_{2}(s)} e^{\lambda_{o} t} \frac{1}{\lambda_{o} - \lambda} (\lambda_{o} I-A)^{-1} y_{o} d\lambda$$

The second integral on the right is o as may be seen by shifting the path of integration C_2 (s) to the left. Hence, by (6),

$$\lim_{t \downarrow 0} \hat{T}_{t} x_{0} = \frac{1}{2 \pi i} \int_{C_{2}(s)} \frac{1}{\lambda_{0} - \lambda} (\lambda I - A)^{-1} y_{0} d\lambda$$

=
$$(\lambda_0 I-A)^{-1} y_0$$
 (the residue at $\lambda = \lambda_0$).

We are now ready to prove (8). Put

$$y_t = \hat{T}_t x_0 - T_t x_0$$
.

Then $\lim_{t \to 0} y_t = 0$, $y'_t = Ay_t (t > 0)$ and y_t is of exponential growth as $t \uparrow \infty$. Hence, for sufficiently large $Re(\lambda)$, we obtain

$$A \int_{0}^{\infty} e^{-\lambda t} y_{t} dt = \int_{0}^{\infty} e^{-\lambda t} Ay_{t} dt = \int_{0}^{\infty} e^{-\lambda t} y_{t} dt$$
$$= \lambda \int_{0}^{\infty} e^{-\lambda t} y_{t} dt$$

by partial integration. But, since every λ with $\operatorname{Re}(\lambda) > 0$ is in the resolvent set of A, we must have

$$\int_{0}^{\infty} e^{-\lambda t} y_{t} dt = 0 \text{ for all } \lambda \text{ if } Re(\lambda) \text{ is }$$
 sufficiently large.

This proves that $y_t = 0$, i.e., $\hat{T}_t x_o = T_t x_o$ for every $x_o \in D(A)$. As D(A) is dense in X, we obtain $\hat{T}_t = T_t$.

Remark. In the case when X is a Banach space, the equivalence of (II) and (III) is proved by E. Hille and R. S. Phillips [1]. The condition (I) was observed by K. Yosida [1], [2]. The theorem given in the present note is adapted from K. Yosida [3].

In the case when X is a Banach space, we can construct, from any equicontinuous semi-group T_t of class (C_{\wp}) , a holomorphic semi-group $T_{t, \alpha} = T_t$ as follows K. Yosida [4], V. Balakrisnan [5] and T. Kato [6]; Consider

(12)
$$f_{t,\alpha}(\lambda) = \frac{1}{2\pi i} \int_{\sigma-i\infty}^{\sigma+i\infty} e^{Z\lambda-Z\alpha t} dz$$

Where $\sigma > 0$, t > 0, $\lambda \ge 0$ and $0 < \emptyset < 1$; we here take the branch of the function Z α in such a way that

 $Re(Z^{(X)}) > 0$ for Re(Z) > 0. Then

(13)
$$\widetilde{T}_{t,\alpha} x = \widetilde{T}_t x = \int_0^{\infty} \int_{t,\alpha} (s) T_s x ds.$$

REFERENCES

- [1] E. HILLE and R.S. PHILLIPS: Functional Analysis and Semi-groups, Providence (1957).
- [2] K. YOSIDA: On the differentiability of semi-groups of linear operators, Proc. Japan Acad. 34 (1958), 337-340.
- [3] K. YOSIDA: Holomorphic semi-groups in a locally convex linear topological spaces, Osaka Math. J. 15 (1963).No. 1, 51-57.
- [4] K. YOSIDA: Fractional powers of infinitesimal generators and the analyticity of semi-groups generated by them, Proc. Japan Acad. 36 (1960), 90-93.
- [5] V. BALAKRISHNAN: Fractional powers of closed operators and the semi-groups generated by them, Pacific J. of Math. 10 (1960), 419-437.
- [6] T. KATO: Note on fractional powers of linear operators, Proc. Japan Acad. 36 (1960), 94-96.