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HOLOMORPHIC SENMI-GROUPS

By Késaku Yosida (University of Tokyo)

§ 1. The Theorem. Let X be a locally convex, sequentially complete, linear
topological space, and let L(X,X) be the set of all linear contipuous mappings

defined on X with values in X .

A system {Tt HER 22 0} of mappings T,k € L(X,X) is called an equi-

t

continuous semi-group of class (C,) if :

() 7,0 =T T, = I (the identity),

t +8°

(2) lim T

x:.-Ttx for every t, 220 end x €X,
t >t )

t [}
(3) for every continuous semi-norm p in X, there exists a continuous
semi-norm q in X such that
p(Ttx) < a(x) forall t 2 0 andxeX

We shall prove the following
Theorem , The three propositions (I), (II) and (I1I) given below are

mutually equivalent :

. T -T
(I) For every t>0 and x € X, T%x::hm t+h tx
h->0 h

exists, and, for a suitable positive constant C , the system of
mappings
{(c t1)% 51 250, n=0, 1,2 }

is equi-continuous.
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(II) The Taylor expansion

_ 2 A= t® ()
TAX-nEO m Ttx

converges for every x€X and every complex number A with larg A< tan"1(Ce—1),
in such a way that the system of mappings { e-'A 7 N slarg \|< tan! (g—e-;-)}
ig, for a certain k > 0 , equi-continuous. °

(III) The infinitesimal generator A of T, defined by

Tt -1
t

Ax = lim
ty0

X

satisfies the condition that the resolvent (A I - A)"'1 exists as a mapping

€L(X, X) for Re(A) >0 and the system of mappings
{l, A1 -0 P s re(X) 21, n=0,1,2, .03

is equi-continuous for a certain positive constant C, -

§ 2. The Sketch of the Proof of the Theorem. We first recall known facts

concerning equi-continuous semi-groups T, of class (c,) :
The domain D(A) of A 4is dense in X ; for every A with Re(A) >0,
(a 0]
the resolvent (AI - A)'1 exists and € L(X,X) ; (AI - A)"'x = f o e"AJc T xdt

for every x€X and A with Re()\) > 0 ; the system of operators
-1-m
[c(cI-a)""T ; 0>0, m=0,1, 2,...

is equi-continuous ; for every xe&D(A) , we have

a7, x

t _
(4) T = AT, x =T

\'
o

L A%, %

concerning T(il)= (’I’,(Grl""l ))’ , we have the

Lemma. Let T, xeD(A) for every t>0 and xéX . Then T,x is infinitely

t

differentiable in t and
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(5) 2 (o

Proof. For any t, >0 with t>+t, , we have, by (1) and (4) ,
! - =
T_t b4 ATtx Tt—toAT‘tOX .
Hence
" 1 = = !
T = Tt—t ATtox ATt_to ATtox A’lt/z AT t/2% = (T /2) X .

Ve have only to repeat the same reasoning to obtain (5).

Proof of the Theorem

(1) implies (II). By the equi-continuity of {[cw,;]n i n20,12t>0),

we obtain, remembering (5),

n n n
p(D\—tl ‘I‘(n)x) < Q.\.":ﬂ__ a1 ol (-17- CT‘{:/n nx) < (l-&%ﬂ- C"l‘e)n q(x) .

n t R N A e
Hence the first part of (II) is proved.

Next consider the semi-group {St} defined by

-t
St-e Tt .

Then
t -t

- - [ -
’cSt = te Tt te Tt .
-%

Thus remembering that 0 g te "1 for § >0, we easily see that

~

{(2‘1‘ ts;c)n 3t >0,n= 0,1,2,...}

is with a certain k > 0, equi~-continuous. Hence, as above, we see that e-AT A
which is an holomorphic extension of St , satisfies the condition that
{e—A‘TA slarg \ | < ten™! (Ce: )} is equi-continuous.

(11) implies (III). Dif?‘erentiating (X1 - A)'1 = j : o=t T, 4t with

respect to A , we obtain, for A=o+ 1 + il witho >0,

o+ 1 +iT)(e + 1 + A0 = &)~ P x

gcr+ +1‘t lnﬂj ~(o#+1417) Do Loy

% , X€X .,
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Let T <o0. Then, by Cauchy's integral theorem, we obtain, for
0< ¢ tan™’ (E%.l)’
(o— 141 T . -1 n+1
1 T)((o+14 T) T-4)" | 7 x =

. Dk 0 i
(o+1+iT) ! ~(o+iT) r elg n i@
m e r S r ol® %€ dr

(4]

Hence, by the equi-continuity of {S i@ T 2 0} , we have

re
P ([(cr 14 T (o +141T) I—A)-1] n+1x3

dr

@

¢ q(x) o 4145 T | ™ (- occos&+TsinO)r ,

L Q * 'LE e r
(<]

| o +14i T | o+

|T sin & =g~ cos & |

= alx). n+1

1-71"'

since 0 ¢ @ ¢ E_, T < 0Oand o 30, we casily see that the second

2
factor on the right is < C1n.

We also obtain similar estimate for the case T > 0.

Thus (II) implies (III).

(III) implies (I). We have, from

. ([01 AR, 10 %) ¢ q (x) withRe (Ag) 21,
the inequality
X = A p"

n n
c,” [ ALl

p (LA = XA =471 %) a(x)

~N

Thus, if Re ( Ao)>/1 and [ A -}\"’ < 1 s the series
c, | A
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[on)
L (A= ™ (1 I~y
n=¢

converges and represents the resolvent ( A, I—A)-1 in such a way that

(6) plA=a"%) ¢ (- =2l -t 6
¢, 1A,4] N

when |A] - @ in the domain of the complex ) -plane which lies on
the right of a oriented path (see the figure)
C2(S) = o(s)H T (s) (-0 <s<¢mw)
such that

i = ] = e m
%}Y‘m T(s) =0, sl,:ql,"loo-r(s) ,

o ols) .
0 e < % BT /1ls) > o

c.(s)

We thus can define, for t » O,

At

\\\\\,,//,

(7) T.x = (X I-4)""x @A

1
t > 1 (’Jz(s)e

If we are able to show that

(8 f =1, ,
then, by
(n) 1 At .n -1 . n
Tt x:mfcz(s)e A (A I=A) xd A =(Tt/n) X,
we obtain
At n -1
(tT') X = j (t X)) (A I-a)
2 c, (s

which implies (I).
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We shall prove (8). To this purpose, we first prove (9), (10) and (11) :

(9) %T; Tt X, = X, for every x, €D (4a),
(10) ’f’%x:A"l“tx for every x € X and t > 0,

(11) 'ftx is of exponential growth when t T &
(11) is clear from (7 ). (10) is proved from

T%x - ATtx =_1 fcz(s)e At {A(A I-A)-1x - A( ) I-A)-1x} ax

211

=_1 f oM gy
21 Cys)
by shifting the path of integration C,(s) to the left.

To prove (9), we take a Ao withRe ( A o) > O on the right of the

path C,(s) and take y € X such that z, = ( ) oI—A)-1yo.

Then
i“t x, =%, (A 1)y, = f ot () I—A)'1(>K°I—A)"1yod>\
2T i 02 (s)
= 1 : ] eA.t R I'A)-"yqd)‘
2 Wi Cz(s) )xo'- A
-1 J AV 4 (a J-8) "ty an
2 Tt 1 CZ(S) A o~ /\\

The second integral on the right is o as may be searby shifting the

.

path of integration C2 (s) to the left. Hence, By (6),
A "1
1imTtx°=__'.’____J' (X Ty
t¥o 2T i (s) Ao‘*)‘
2

(A 87"y, (the residue at A = X ,).
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We_are now ready to prove (8). Put

yt = Tt XO - T‘b XQ P

Then lim
tYo

as tto. Hence, for sufficiently large Re(-l), we obtain

¥y =0, V' = Ay (ty 0) and ¥, is of exponential growth

]

@ ®
-At - @
) e y,db J A tgar=S o X tpas
0 v 0 b

0

I

)
A f e A ty 44t
0

by partial integration. But, since every A with Re(A)> O is in the resolvent

set of A, we must have

[¢9]
/ e")‘tytdt=o for a1l A if Re(}) is
0

sufficiently large.

This proves that y, =0, i.e., ’Et x, =T, x, for every x, €D(4) . &s D(A)
ig dense in X, we obtain i\t = Tt .

Bemark. In the case when X is a Banach space, the equivalence of (II) and
(III) is proved by E. Hille and R. S. Phillips [1]. The condition (I) was obser.
ved by K. Yosida [1], [2]. The theorem given in the present note is adapted from
K. Yosida [3].

In the case when X 4is a Banach space, we can construct, from any equi-

continuous semi-group T + of class (Co,) , & holomorphic semi-group T b = TTJ_b
0 y

as follows K. Yosida [4], V. Balakrisnan [5] and T. Kato [6] ; Consider

eZA ~ZX %

(12) c7[t,oc (’\) = : jo+ico

2Wi 4z

-1 m



(4]
(2]

(3]
(4]

(5]
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Where o 30, t Y0, A> 0 and 0 ¢ % <1 ; we here take the branch of the

function 2% in such a way that

Re(z¥) > 0 for Re(Z) Y 0. Then

~ ~ o)
(13) T, x = By z= fo fu o () Bats.
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