Kac’s chaos and Kac’s program
Séminaire Laurent Schwartz — EDP et applications (2012-2013), Talk no. 22, 17 p.

In this note I present the main results about the quantitative and qualitative propagation of chaos for the Boltzmann-Kac system obtained in collaboration with C. Mouhot in [33] which gives a possible answer to some questions formulated by Kac in [25]. We also present some related recent results about Kac’s chaos and Kac’s program obtained in [34, 23, 13] by K. Carrapatoso, M. Hauray, C. Mouhot, B. Wennberg and myself.

@article{SLSEDP_2012-2013____A22_0,
     author = {Mischler, St\'ephane},
     title = {Kac's chaos and Kac's program},
     journal = {S\'eminaire Laurent Schwartz --- EDP et applications},
     publisher = {Institut des hautes \'etudes scientifiques \& Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2012-2013},
     note = {talk:22},
     doi = {10.5802/slsedp.48},
     language = {en},
     url = {http://www.numdam.org/item/SLSEDP_2012-2013____A22_0}
}
Mischler, Stéphane. Kac’s chaos and Kac’s program. Séminaire Laurent Schwartz — EDP et applications (2012-2013), Talk no. 22, 17 p. doi : 10.5802/slsedp.48. http://www.numdam.org/item/SLSEDP_2012-2013____A22_0/

[1] Arkeryd, L., Caprino, S., and Ianiro, N. The homogeneous Boltzmann hierarchy and statistical solutions to the homogeneous Boltzmann equation. J. Statist. Phys. 63, 1-2 (1991), 345–361. | MR 1115588

[2] Bodineau, T., Gallagher, I., and Saint-Raymond, L. The brownian motion as the limit of a deterministic system of hard-spheres. arXiv:1305.3397, preprint (2013).

[3] Boissard, E., and Le Gouic, T. On the mean speed of convergence of empirical and occupation measures in wassserstein distance. arXiv:1105.5263v1.

[4] Bolley, F., Guillin, A., and Malrieu, F. Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation. M2AN Math. Model. Numer. Anal. 44, 5 (2010), 867–884. | Numdam | MR 2731396 | Zbl 1201.82029

[5] Boltzmann, L. Weitere studien über das wärmegleichgewicht unter gasmolekülen. Sitzungsberichte der Akademie der Wissenschaften 66 (1872), 275–370. Translation: Further studies on the thermal equilibrium of gas molecules, in Kinetic Theory 2, 88–174, Ed. S.G. Brush, Pergamon, Oxford (1966).

[6] Carleman, T. Sur la théorie de l’équation intégrodifférentielle de Boltzmann. Acta Math. 60, 1 (1933), 91–146. | MR 1555365

[7] Carlen, E., Carvalho, M. C., and Loss, M. Spectral gap for the Kac model with hard collisions. arXiv:1304.5124.

[8] Carlen, E. A., Carvalho, M. C., Le Roux, J., Loss, M., and Villani, C. Entropy and chaos in the Kac model. Kinet. Relat. Models 3, 1 (2010), 85–122. | MR 2580955 | Zbl 1186.76675

[9] Carlen, E. A., Carvalho, M. C., and Loss, M. Determination of the spectral gap for Kac’s master equation and related stochastic evolution. Acta Math. 191, 1 (2003), 1–54. | MR 2020418 | Zbl 1080.60091

[10] Carlen, E. A., Gabetta, E., and Toscani, G. Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas. Comm. Math. Phys. 199, 3 (1999), 521–546. | MR 1669689 | Zbl 0927.76088

[11] Carlen, E. A., Geronimo, J. S., and Loss, M. Determination of the spectral gap in the Kac model for physical momentum and energy-conserving collisions. SIAM J. Math. Anal. 40, 1 (2008), 327–364. | MR 2403324 | Zbl 1163.82007

[12] Carrapatoso, K. Propagation of chaos for the spatially homogeneous Landau equation for maxwellian molecules. hal-00765621.

[13] Carrapatoso, K. Quantitative and qualitative Kac’s chaos on the Boltzmann sphere. hal-00694767.

[14] Fournier, N., Hauray, M., and Mischler, S. Propagation of chaos for the 2d viscous vortex model. To appear in J. Eur. Math. Soc.

[15] Fournier, N., and Méléard, S. Monte Carlo approximations and fluctuations for 2d Boltzmann equations without cutoff. Markov Process. Related Fields 7 (2001), 159–191. | MR 1835755 | Zbl 0972.60098

[16] Fournier, N., and Méléard, S. A stochastic particle numerical method for 3d Boltzmann equation without cutoff. Math. Comp. 71 (2002), 583–604. | MR 1885616 | Zbl 0990.60085

[17] Fournier, N., and Mischler, S. Rate of convergence of the Nanbu particle system for hard potentials. hal-00793662.

[18] Fournier, N., and Mouhot, C. On the well-posedness of the spatially homogeneous boltzmann equation with a moderate angular singularity. Comm. Math. Phys. 283, 3 (2009), 803–824. | MR 2511651 | Zbl 1175.76129

[19] Grad, H. Principles of the kinetic theory of gases. In Handbuch der Physik (herausgegeben von S. Flügge), Bd. 12, Thermodynamik der Gase. Springer-Verlag, Berlin, 1958, pp. 205–294. | MR 135535

[20] Graham, C., and Méléard, S. Stochastic particle approximations for generalized Boltzmann models and convergence estimates. The Annals of Probability 25 (1997), 115–132. | MR 1428502 | Zbl 0873.60076

[21] Grünbaum, F. A. Propagation of chaos for the Boltzmann equation. Arch. Rational Mech. Anal. 42 (1971), 323–345. | MR 334788 | Zbl 0236.45011

[22] Hauray, M. Fisher information decay for the Boltzman-Kac system associtaed to maxwell molecules. Personnal communication.

[23] Hauray, M., and Mischler, S. On Kac’s chaos and related problems, work in progress.

[24] Janvresse, E. Spectral gap for Kac’s model of Boltzmann equation. Ann. Probab. 29, 1 (2001), 288–304. | MR 1825150 | Zbl 1034.82049

[25] Kac, M. Foundations of kinetic theory. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III (Berkeley and Los Angeles, 1956), University of California Press, pp. 171–197. | MR 84985 | Zbl 0072.42802

[26] Kolokoltsov, V. N. Nonlinear Markov processes and kinetic equations, vol. 182 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2010. | MR 2680971 | Zbl 1222.60003

[27] Lanford, III, O. E. Time evolution of large classical systems. In Dynamical systems, theory and applications (Recontres, Battelle Res. Inst., Seattle, Wash., 1974). Springer, Berlin, 1975, pp. 1–111. Lecture Notes in Phys., Vol. 38. | MR 479206 | Zbl 0329.70011

[28] Lu, X., and Mouhot, C. On measure solutions of the Boltzmann equation, Part II: Rate of convergence to equilibrium. arXiv:1306.0764.

[29] Maslen, D. K. The eigenvalues of Kac’s master equation. Math. Z. 243, 2 (2003), 291–331. | MR 1961868 | Zbl 1016.82016

[30] Maxwell, J. C. On the dynamical theory of gases. Philos. Trans. Roy. Soc. London Ser. A 157 (1867), 49–88.

[31] McKean, H. P. The central limit theorem for Carleman’s equation. Israel J. Math. 21, 1 (1975), 54–92. | MR 423553 | Zbl 0315.60013

[32] McKean, Jr., H. P. An exponential formula for solving Boltmann’s equation for a Maxwellian gas. J. Combinatorial Theory 2 (1967), 358–382. | MR 224348 | Zbl 0152.46501

[33] Mischler, S., and Mouhot, C. Kac’s program in kinetic theory. Invent. Math. 193, 1 (2013), 1–147. | MR 3069113 | Zbl 1274.82048

[34] Mischler, S., Mouhot, C., and Wennberg, B. A new approach to quantitative chaos propagation for drift, diffusion and jump processes. To appear in Probab. Theory Related Fields, hal-00559132.

[35] Otto, F., and Villani, C. Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173, 2 (2000), 361–400. | MR 1760620 | Zbl 0985.58019

[36] Peyre, R. Some ideas about quantitative convergence of collision models to their mean field limit. J. Stat. Phys. 136, 6 (2009), 1105–1130. | MR 2550398 | Zbl 1180.82151

[37] Sznitman, A.-S. Équations de type de Boltzmann, spatialement homogènes. Z. Wahrsch. Verw. Gebiete 66, 4 (1984), 559–592. | MR 753814 | Zbl 0553.60069

[38] Sznitman, A.-S. Topics in propagation of chaos. In École d’Été de Probabilités de Saint-Flour XIX—1989, vol. 1464 of Lecture Notes in Math. Springer, Berlin, 1991, pp. 165–251. | MR 1108185 | Zbl 0732.60114

[39] Tanaka, H. Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. Z. Wahrsch. Verw. Gebiete 46, 1 (1978/79), 67–105. | MR 512334 | Zbl 0389.60079

[40] Tanaka, H. Some probabilistic problems in the spatially homogeneous Boltzmann equation. In Theory and application of random fields (Bangalore, 1982), vol. 49 of Lecture Notes in Control and Inform. Sci. Springer, Berlin, 1983, pp. 258–267. | MR 799949 | Zbl 0514.60063

[41] Toscani, G., and Villani, C. Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas. J. Statist. Phys. 94, 3-4 (1999), 619–637. | MR 1675367 | Zbl 0958.82044

[42] Villani, C. Fisher information estimates for Boltzmann’s collision operator. J. Math. Pures Appl. (9) 77, 8 (1998), 821–837. | MR 1646804 | Zbl 0918.60093

[43] Villani, C. Cercignani’s conjecture is sometimes true and always almost true. Comm. Math. Phys. 234, 3 (2003), 455–490. | MR 1964379 | Zbl 1041.82018