Gaz de bosons dans le régime de champ moyen : les théories de Hartree et Bogoliubov
Séminaire Laurent Schwartz — EDP et applications (2012-2013), Talk no. 3, 22 p.

Nous étudions le spectre du Hamiltonien d’un gaz de bosons, à la limite d’un grand nombre N de particules et dans le régime de champ moyen (l’interaction est multipliée par 1/N). Le premier terme du développement est donné par le modèle non linéaire de Hartree, alors que le second terme est donné par la théorie de Bogoliubov.

@article{SLSEDP_2012-2013____A3_0,
     author = {Lewin, Mathieu},
     title = {Gaz de bosons dans le r\'egime de champ moyen~: les th\'eories de Hartree et Bogoliubov},
     journal = {S\'eminaire Laurent Schwartz --- EDP et applications},
     publisher = {Institut des hautes \'etudes scientifiques \& Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2012-2013},
     note = {talk:3},
     doi = {10.5802/slsedp.33},
     language = {fr},
     url = {http://www.numdam.org/item/SLSEDP_2012-2013____A3_0}
}
Lewin, Mathieu. Gaz de bosons dans le régime de champ moyen : les théories de Hartree et Bogoliubov. Séminaire Laurent Schwartz — EDP et applications (2012-2013), Talk no. 3, 22 p. doi : 10.5802/slsedp.33. http://www.numdam.org/item/SLSEDP_2012-2013____A3_0/

[1] Z. Ammari and F. Nier, Mean field limit for bosons and infinite dimensional phase-space analysis, Annales Henri Poincaré, 9 (2008), pp. 1503–1574. http://dx.doi.org/10.1007/s00023-008-0393-5. | Article | MR 2465733 | Zbl 1171.81014

[2] Z. Ammari and F. Nier, Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states, J. Math. Pures Appl., 95 (2011), pp. 585–626. | MR 2802894 | Zbl 1251.81062

[3] V. Bach, Ionization energies of bosonic Coulomb systems, Lett. Math. Phys., 21 (1991), pp. 139–149. | MR 1093525 | Zbl 0725.47049

[4] V. Bach, R. Lewis, E. H. Lieb, and H. Siedentop, On the number of bound states of a bosonic N-particle Coulomb system, Math. Z., 214 (1993), pp. 441–459. | MR 1245205 | Zbl 0852.47036

[5] B. Baumgartner, On Thomas-Fermi-von Weizsäcker and Hartree energies as functions of the degree of ionisation, J. Phys. A, 17 (1984), pp. 1593–1601. | MR 750572 | Zbl 0541.49020

[6] G. Ben Arous, K. Kirkpatrick, and B. Schlein, A Central Limit Theorem in Many-Body Quantum Dynamics, arXiv :1111.6999, (2011).

[7] R. Benguria and E. H. Lieb, Proof of the Stability of Highly Negative Ions in the Absence of the Pauli Principle, Physical Review Letters, 50 (1983), pp. 1771–1774.

[8] F. Berezin, The method of second quantization, Pure and applied physics. A series of monographs and textbooks, Academic Press, 1966. | MR 208930 | Zbl 0151.44001

[9] N. N. Bogoliubov, About the theory of superfluidity, Izv. Akad. Nauk SSSR, 11 (1947), p. 77. | MR 22177

[10] F. Calogero, Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials, J. Mathematical Phys., 12 (1971), pp. 419–436. | MR 280103 | Zbl 1002.70558

[11] F. Calogero and C. Marchioro, Lower bounds to the ground-state energy of systems containing identical particles, J. Mathematical Phys., 10 (1969), pp. 562–569. | MR 339719

[12] H. D. Cornean, J. Derezinski, and P. Zin, On the infimum of the energy-momentum spectrum of a homogeneous bose gas, J. Math. Phys., 50 (2009), p. 062103. | MR 2541168 | Zbl 1216.82006

[13] B. De Finetti, Funzione caratteristica di un fenomeno aleatorio. Atti della R. Accademia Nazionale dei Lincei, 1931. Ser. 6, Memorie, Classe di Scienze Fisiche, Matematiche e Naturali.

[14] P. Diaconis and D. Freedman, Finite exchangeable sequences, Ann. Probab., 8 (1980), pp. 745–764. | MR 577313 | Zbl 0434.60034

[15] L. Erdös, B. Schlein, and H.-T. Yau, Ground-state energy of a low-density Bose gas : A second-order upper bound, Phys. Rev. A, 78 (2008), p. 053627.

[16] J. Ginibre and G. Velo, The classical field limit of scattering theory for nonrelativistic many-boson systems. II, Commun. Math. Phys., 68 (1979), pp. 45–68. | MR 539736 | Zbl 0443.35068

[17] M. Girardeau, Relationship between systems of impenetrable bosons and fermions in one dimension, J. Mathematical Phys., 1 (1960), pp. 516–523. | MR 128913 | Zbl 0098.21704

[18] A. Giuliani and R. Seiringer, The ground state energy of the weakly interacting Bose gas at high density, J. Stat. Phys., 135 (2009), pp. 915–934. | MR 2548599 | Zbl 1172.82006

[19] P. Grech and R. Seiringer, The excitation spectrum for weakly interacting bosons in a trap, arXiv :1205.5259, (2012). | MR 2824481

[20] M. G. Grillakis, M. Machedon, and D. Margetis, Second-order corrections to mean field evolution of weakly interacting bosons. I, Commun. Math. Phys., 294 (2010), pp. 273–301. | MR 2575484 | Zbl 1208.82030

[21] M. G. Grillakis, M. Machedon, and D. Margetis, Second-order corrections to mean field evolution of weakly interacting bosons. II, Adv. Math., 228 (2011), pp. 1788–1815. | MR 2824569

[22] K. Hepp, The classical limit for quantum mechanical correlation functions, Comm. Math. Phys., 35 (1974), pp. 265–277. | MR 332046

[23] E. Hewitt and L. J. Savage, Symmetric measures on Cartesian products, Trans. Amer. Math. Soc., 80 (1955), pp. 470–501. | MR 76206 | Zbl 0066.29604

[24] R. L. Hudson and G. R. Moody, Locally normal symmetric states and an analogue of de Finetti’s theorem, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 33 (1975/76), pp. 343–351. | MR 397421 | Zbl 0304.60001

[25] L. Landau, Theory of the Superfluidity of Helium II, Phys. Rev., 60 (1941), pp. 356–358. | Zbl 0027.18505

[26] M. Lewin, Geometric methods for nonlinear many-body quantum systems, J. Funct. Anal., 260 (2011), pp. 3535–3595. | MR 2781970 | Zbl 1216.81180

[27] M. Lewin, P. T. Nam, and N. Rougerie, Derivation of Hartree’s theory for generic mean-field Bose gases, preprint arXiv :1303.0981, (2013).

[28] M. Lewin, P. T. Nam, S. Serfaty, and J. P. Solovej, Bogoliubov spectrum of interacting Bose gases, preprint arXiv :1211.2778, (2012).

[29] E. H. Lieb, Exact analysis of an interacting Bose gas. II. The excitation spectrum, Phys. Rev. (2), 130 (1963), pp. 1616–1624. | MR 156631 | Zbl 0138.23002

[30] E. H. Lieb, A lower bound for Coulomb energies, Phys. Lett. A, 70 (1979), pp. 444–446. | MR 588128

[31] E. H. Lieb and W. Liniger, Exact analysis of an interacting Bose gas. I. The general solution and the ground state, Phys. Rev. (2), 130 (1963), pp. 1605–1616. | MR 156630 | Zbl 0138.23001

[32] E. H. Lieb and S. Oxford, Improved lower bound on the indirect Coulomb energy, Int. J. Quantum Chem., 19 (1980), pp. 427–439.

[33] E. H. Lieb and R. Seiringer, The Stability of Matter in Quantum Mechanics, Cambridge Univ. Press, 2010. | MR 2583992 | Zbl 1179.81004

[34] E. H. Lieb, R. Seiringer, J. P. Solovej, and J. Yngvason, The mathematics of the Bose gas and its condensation, Oberwolfach Seminars, Birkhäuser, 2005. | MR 2143817 | Zbl 1104.82012

[35] E. H. Lieb and J. P. Solovej, Ground state energy of the one-component charged Bose gas, Commun. Math. Phys., 217 (2001), pp. 127–163. | MR 1815028 | Zbl 1042.82004

[36] E. H. Lieb and J. P. Solovej, Ground state energy of the two-component charged Bose gas., Commun. Math. Phys., 252 (2004), pp. 485–534. | MR 2104887 | Zbl 1124.82303

[37] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Part I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), pp. 109–149. | Numdam | MR 778970 | Zbl 0704.49004

[38] P.-L. Lions, Mean-field games and applications. Lectures at the Collège de France, unpublished, Nov 2007. | Zbl 1205.91027

[39] P. T. Nam, Contributions to the rigorous study of the structure of atoms, PhD thesis, University of Copenhagen, 2011.

[40] O. Penrose and L. Onsager, Bose-Einstein Condensation and Liquid Helium, Phys. Rev., 104 (1956), pp. 576–584. | Zbl 0071.44701

[41] D. Petz, G. A. Raggio, and A. Verbeure, Asymptotics of Varadhan-type and the Gibbs variational principle, Comm. Math. Phys., 121 (1989), pp. 271–282. | MR 985399 | Zbl 0682.46054

[42] G. A. Raggio and R. F. Werner, Quantum statistical mechanics of general mean field systems, Helv. Phys. Acta, 62 (1989), pp. 980–1003. | MR 1034151 | Zbl 0938.82501

[43] M. Reed and B. Simon, Methods of Modern Mathematical Physics. II. Fourier analysis, self-adjointness, Academic Press, New York, 1975. | MR 493420 | Zbl 0242.46001

[44] E. Sandier and S. Serfaty, 2D Coulomb Gases and the Renormalized Energy, arXiv :1201.3503, (2012).

[45] E. Sandier and S. Serfaty, From the Ginzburg-Landau model to vortex lattice problems, Commun. Math. Phys., 313 (2012), pp. 635–743. | MR 2945619 | Zbl 1252.35034

[46] R. Seiringer, The excitation spectrum for weakly interacting bosons, Commun. Math. Phys., 306 (2011), pp. 565–578. | MR 2824481 | Zbl 1226.82039

[47] J. P. Solovej, Asymptotics for bosonic atoms, Lett. Math. Phys., 20 (1990), pp. 165–172. | MR 1065245 | Zbl 0712.35075

[48] J. P. Solovej, Upper bounds to the ground state energies of the one- and two-component charged Bose gases, Commun. Math. Phys., 266 (2006), pp. 797–818. | MR 2238912 | Zbl 1126.82006

[49] J. P. Solovej, Many body quantum mechanics. LMU, 2007. Lecture notes.

[50] E. Størmer, Symmetric states of infinite tensor products of C * -algebras, J. Functional Analysis, 3 (1969), pp. 48–68. | MR 241992 | Zbl 0167.43403

[51] B. Sutherland, Quantum Many-Body Problem in One Dimension : Ground State, J. Mathematical Phys., 12 (1971), pp. 246–250.

[52] B. Sutherland, Quantum Many-Body Problem in One Dimension : Thermodynamics, J. Mathematical Phys., 12 (1971), pp. 251–256.

[53] A. Sütő, Thermodynamic limit and proof of condensation for trapped bosons, J. Statist. Phys., 112 (2003), pp. 375–396. | MR 1991602 | Zbl 1035.82007

[54] R. F. Werner, Large deviations and mean-field quantum systems, in Quantum probability & related topics, QP-PQ, VII, World Sci. Publ., River Edge, NJ, 1992, pp. 349–381. | MR 1186674 | Zbl 0788.60126

[55] T. T. Wu, Bose-Einstein condensation in an external potential at zero temperature : General theory, Phys. Rev. A, 58 (1998), pp. 1465–1474.

[56] H.-T. Yau and J. Yin, The second order upper bound for the ground energy of a Bose gas, J. Stat. Phys., 136 (2009), pp. 453–503. | MR 2529681 | Zbl 1200.82002

[57] J. Yngvason, The interacting Bose gas : A continuing challenge, Phys. Particles Nuclei, 41 (2010), pp. 880–884.