Gaz de bosons dans le régime de champ moyen : les théories de Hartree et Bogoliubov
Séminaire Laurent Schwartz — EDP et applications (2012-2013), Exposé no. 3, 22 p.

Nous étudions le spectre du Hamiltonien d’un gaz de bosons, à la limite d’un grand nombre N de particules et dans le régime de champ moyen (l’interaction est multipliée par 1/N). Le premier terme du développement est donné par le modèle non linéaire de Hartree, alors que le second terme est donné par la théorie de Bogoliubov.

DOI : 10.5802/slsedp.33
Lewin, Mathieu 1

1 CNRS & Université de Cergy-Pontoise (UMR 8088) 95000 Cergy-Pontoise France
@article{SLSEDP_2012-2013____A3_0,
     author = {Lewin, Mathieu},
     title = {Gaz de bosons dans le r\'egime de champ moyen~: les th\'eories de {Hartree} et {Bogoliubov}},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:3},
     pages = {1--22},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2012-2013},
     doi = {10.5802/slsedp.33},
     language = {fr},
     url = {http://archive.numdam.org/articles/10.5802/slsedp.33/}
}
TY  - JOUR
AU  - Lewin, Mathieu
TI  - Gaz de bosons dans le régime de champ moyen : les théories de Hartree et Bogoliubov
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:3
PY  - 2012-2013
SP  - 1
EP  - 22
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://archive.numdam.org/articles/10.5802/slsedp.33/
DO  - 10.5802/slsedp.33
LA  - fr
ID  - SLSEDP_2012-2013____A3_0
ER  - 
%0 Journal Article
%A Lewin, Mathieu
%T Gaz de bosons dans le régime de champ moyen : les théories de Hartree et Bogoliubov
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:3
%D 2012-2013
%P 1-22
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://archive.numdam.org/articles/10.5802/slsedp.33/
%R 10.5802/slsedp.33
%G fr
%F SLSEDP_2012-2013____A3_0
Lewin, Mathieu. Gaz de bosons dans le régime de champ moyen : les théories de Hartree et Bogoliubov. Séminaire Laurent Schwartz — EDP et applications (2012-2013), Exposé no. 3, 22 p. doi : 10.5802/slsedp.33. http://archive.numdam.org/articles/10.5802/slsedp.33/

[1] Z. Ammari and F. Nier, Mean field limit for bosons and infinite dimensional phase-space analysis, Annales Henri Poincaré, 9 (2008), pp. 1503–1574. | DOI | MR | Zbl

[2] Z. Ammari and F. Nier, Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states, J. Math. Pures Appl., 95 (2011), pp. 585–626. | MR | Zbl

[3] V. Bach, Ionization energies of bosonic Coulomb systems, Lett. Math. Phys., 21 (1991), pp. 139–149. | MR | Zbl

[4] V. Bach, R. Lewis, E. H. Lieb, and H. Siedentop, On the number of bound states of a bosonic N-particle Coulomb system, Math. Z., 214 (1993), pp. 441–459. | MR | Zbl

[5] B. Baumgartner, On Thomas-Fermi-von Weizsäcker and Hartree energies as functions of the degree of ionisation, J. Phys. A, 17 (1984), pp. 1593–1601. | MR | Zbl

[6] G. Ben Arous, K. Kirkpatrick, and B. Schlein, A Central Limit Theorem in Many-Body Quantum Dynamics, , (2011). | arXiv

[7] R. Benguria and E. H. Lieb, Proof of the Stability of Highly Negative Ions in the Absence of the Pauli Principle, Physical Review Letters, 50 (1983), pp. 1771–1774.

[8] F. Berezin, The method of second quantization, Pure and applied physics. A series of monographs and textbooks, Academic Press, 1966. | MR | Zbl

[9] N. N. Bogoliubov, About the theory of superfluidity, Izv. Akad. Nauk SSSR, 11 (1947), p. 77. | MR

[10] F. Calogero, Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials, J. Mathematical Phys., 12 (1971), pp. 419–436. | MR | Zbl

[11] F. Calogero and C. Marchioro, Lower bounds to the ground-state energy of systems containing identical particles, J. Mathematical Phys., 10 (1969), pp. 562–569. | MR

[12] H. D. Cornean, J. Derezinski, and P. Zin, On the infimum of the energy-momentum spectrum of a homogeneous bose gas, J. Math. Phys., 50 (2009), p. 062103. | MR | Zbl

[13] B. De Finetti, Funzione caratteristica di un fenomeno aleatorio. Atti della R. Accademia Nazionale dei Lincei, 1931. Ser. 6, Memorie, Classe di Scienze Fisiche, Matematiche e Naturali.

[14] P. Diaconis and D. Freedman, Finite exchangeable sequences, Ann. Probab., 8 (1980), pp. 745–764. | MR | Zbl

[15] L. Erdös, B. Schlein, and H.-T. Yau, Ground-state energy of a low-density Bose gas : A second-order upper bound, Phys. Rev. A, 78 (2008), p. 053627.

[16] J. Ginibre and G. Velo, The classical field limit of scattering theory for nonrelativistic many-boson systems. II, Commun. Math. Phys., 68 (1979), pp. 45–68. | MR | Zbl

[17] M. Girardeau, Relationship between systems of impenetrable bosons and fermions in one dimension, J. Mathematical Phys., 1 (1960), pp. 516–523. | MR | Zbl

[18] A. Giuliani and R. Seiringer, The ground state energy of the weakly interacting Bose gas at high density, J. Stat. Phys., 135 (2009), pp. 915–934. | MR | Zbl

[19] P. Grech and R. Seiringer, The excitation spectrum for weakly interacting bosons in a trap, , (2012). | arXiv | MR

[20] M. G. Grillakis, M. Machedon, and D. Margetis, Second-order corrections to mean field evolution of weakly interacting bosons. I, Commun. Math. Phys., 294 (2010), pp. 273–301. | MR | Zbl

[21] M. G. Grillakis, M. Machedon, and D. Margetis, Second-order corrections to mean field evolution of weakly interacting bosons. II, Adv. Math., 228 (2011), pp. 1788–1815. | MR

[22] K. Hepp, The classical limit for quantum mechanical correlation functions, Comm. Math. Phys., 35 (1974), pp. 265–277. | MR

[23] E. Hewitt and L. J. Savage, Symmetric measures on Cartesian products, Trans. Amer. Math. Soc., 80 (1955), pp. 470–501. | MR | Zbl

[24] R. L. Hudson and G. R. Moody, Locally normal symmetric states and an analogue of de Finetti’s theorem, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 33 (1975/76), pp. 343–351. | MR | Zbl

[25] L. Landau, Theory of the Superfluidity of Helium II, Phys. Rev., 60 (1941), pp. 356–358. | Zbl

[26] M. Lewin, Geometric methods for nonlinear many-body quantum systems, J. Funct. Anal., 260 (2011), pp. 3535–3595. | MR | Zbl

[27] M. Lewin, P. T. Nam, and N. Rougerie, Derivation of Hartree’s theory for generic mean-field Bose gases, preprint , (2013). | arXiv

[28] M. Lewin, P. T. Nam, S. Serfaty, and J. P. Solovej, Bogoliubov spectrum of interacting Bose gases, preprint , (2012). | arXiv

[29] E. H. Lieb, Exact analysis of an interacting Bose gas. II. The excitation spectrum, Phys. Rev. (2), 130 (1963), pp. 1616–1624. | MR | Zbl

[30] E. H. Lieb, A lower bound for Coulomb energies, Phys. Lett. A, 70 (1979), pp. 444–446. | MR

[31] E. H. Lieb and W. Liniger, Exact analysis of an interacting Bose gas. I. The general solution and the ground state, Phys. Rev. (2), 130 (1963), pp. 1605–1616. | MR | Zbl

[32] E. H. Lieb and S. Oxford, Improved lower bound on the indirect Coulomb energy, Int. J. Quantum Chem., 19 (1980), pp. 427–439.

[33] E. H. Lieb and R. Seiringer, The Stability of Matter in Quantum Mechanics, Cambridge Univ. Press, 2010. | MR | Zbl

[34] E. H. Lieb, R. Seiringer, J. P. Solovej, and J. Yngvason, The mathematics of the Bose gas and its condensation, Oberwolfach Seminars, Birkhäuser, 2005. | MR | Zbl

[35] E. H. Lieb and J. P. Solovej, Ground state energy of the one-component charged Bose gas, Commun. Math. Phys., 217 (2001), pp. 127–163. | MR | Zbl

[36] E. H. Lieb and J. P. Solovej, Ground state energy of the two-component charged Bose gas., Commun. Math. Phys., 252 (2004), pp. 485–534. | MR | Zbl

[37] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Part I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), pp. 109–149. | Numdam | MR | Zbl

[38] P.-L. Lions, Mean-field games and applications. Lectures at the Collège de France, unpublished, Nov 2007. | Zbl

[39] P. T. Nam, Contributions to the rigorous study of the structure of atoms, PhD thesis, University of Copenhagen, 2011.

[40] O. Penrose and L. Onsager, Bose-Einstein Condensation and Liquid Helium, Phys. Rev., 104 (1956), pp. 576–584. | Zbl

[41] D. Petz, G. A. Raggio, and A. Verbeure, Asymptotics of Varadhan-type and the Gibbs variational principle, Comm. Math. Phys., 121 (1989), pp. 271–282. | MR | Zbl

[42] G. A. Raggio and R. F. Werner, Quantum statistical mechanics of general mean field systems, Helv. Phys. Acta, 62 (1989), pp. 980–1003. | MR | Zbl

[43] M. Reed and B. Simon, Methods of Modern Mathematical Physics. II. Fourier analysis, self-adjointness, Academic Press, New York, 1975. | MR | Zbl

[44] E. Sandier and S. Serfaty, 2D Coulomb Gases and the Renormalized Energy, , (2012). | arXiv

[45] E. Sandier and S. Serfaty, From the Ginzburg-Landau model to vortex lattice problems, Commun. Math. Phys., 313 (2012), pp. 635–743. | MR | Zbl

[46] R. Seiringer, The excitation spectrum for weakly interacting bosons, Commun. Math. Phys., 306 (2011), pp. 565–578. | MR | Zbl

[47] J. P. Solovej, Asymptotics for bosonic atoms, Lett. Math. Phys., 20 (1990), pp. 165–172. | MR | Zbl

[48] J. P. Solovej, Upper bounds to the ground state energies of the one- and two-component charged Bose gases, Commun. Math. Phys., 266 (2006), pp. 797–818. | MR | Zbl

[49] J. P. Solovej, Many body quantum mechanics. LMU, 2007. Lecture notes.

[50] E. Størmer, Symmetric states of infinite tensor products of C * -algebras, J. Functional Analysis, 3 (1969), pp. 48–68. | MR | Zbl

[51] B. Sutherland, Quantum Many-Body Problem in One Dimension : Ground State, J. Mathematical Phys., 12 (1971), pp. 246–250.

[52] B. Sutherland, Quantum Many-Body Problem in One Dimension : Thermodynamics, J. Mathematical Phys., 12 (1971), pp. 251–256.

[53] A. Sütő, Thermodynamic limit and proof of condensation for trapped bosons, J. Statist. Phys., 112 (2003), pp. 375–396. | MR | Zbl

[54] R. F. Werner, Large deviations and mean-field quantum systems, in Quantum probability & related topics, QP-PQ, VII, World Sci. Publ., River Edge, NJ, 1992, pp. 349–381. | MR | Zbl

[55] T. T. Wu, Bose-Einstein condensation in an external potential at zero temperature : General theory, Phys. Rev. A, 58 (1998), pp. 1465–1474.

[56] H.-T. Yau and J. Yin, The second order upper bound for the ground energy of a Bose gas, J. Stat. Phys., 136 (2009), pp. 453–503. | MR | Zbl

[57] J. Yngvason, The interacting Bose gas : A continuing challenge, Phys. Particles Nuclei, 41 (2010), pp. 880–884.

Cité par Sources :