SÉMINAIRE SCHWARTZ

L. SCHWARTZ

Les opérateurs de convolution. Le théorème des noyaux

Séminaire Schwartz, tome 1 (1953-1954), exp. nº 11, p. 1-7

http://www.numdam.org/item?id=SLS_1953-1954__1__A12_0

© Séminaire Schwartz

(Secrétariat mathématique, Paris), 1953-1954, tous droits réservés.

L'accès aux archives de la collection « Séminaire Schwartz » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Sóminaire SCHWARTZ Année 1953/1954

10 février 1954

Exposé nº 11

LES OPÉRITEURS DE CONVOLUTION - LE THÉOREME DES NOYAUX.

I. (1) $\frac{\mathcal{H}^{m}(E) \times \mathcal{L}_{\mathcal{E}}(\mathcal{H}^{lm}; E)}{\mathcal{H}^{m}(\mathcal{H}^{lm})}$. Cette proposition est équivalente à l'assertion (2) $\mathcal{H}^{m}(\mathcal{H}^{lm})$.

Si nous avons la propriété (1) nous en déduisons la propriété (2) e En effet, prouver (2) revient alors à montrer que ${}^{t}L_{\overrightarrow{\delta}}$ appartient à $\mathcal{L}_{\mathcal{E}}(\mathcal{H}^{im}_{c};\mathcal{H}^{im}_{c})$ or cette application est l'identité, donc appartient bien à ce dernier espace.

Réciproquement, soit $v \in \mathcal{L}_{\mathcal{E}}(\mathbb{R}^m; E)$, alors $v \circ S \in \mathbb{H}^m(E)$. $\overrightarrow{v} = v \circ S$ est l'élément associé à v cherché. Pour cela il nous faut vérifier $\overrightarrow{L}_{\overrightarrow{V}} = v$, ou $v(T) = T(\overrightarrow{v})$, pour $T \in \mathbb{H}^m_{c}$. Or $T(\overrightarrow{v}) = T(v \circ S) = v(T(S)) = v(T)$. Ceci achève de prouver l'équivalence de (2) et de (1). En vertu du lemme démontré la dernière fois nous déduisons l'assertion (1). II. Opérateurs de convolution.

Convention: Dans la suite, toute variable en indice, ou surmontée d'un chapeau, désignera une variable muette; ainsi f(x) désigne la valeur de la fonction f au point x, f(x) désigne la fonction f.

$$f(\hat{x},y) = (x \rightarrow f(x,y)) , f(\hat{x},\hat{y}) = (y \rightarrow (x \rightarrow f(x,y))).$$

$$f(\hat{x})_y = (x \rightarrow f(x)_y) .$$

Un indice répété 2 fois dans une formule telle que $T_x(\varphi(x)) = T(\varphi)$ est aussi muet.

Problème. Soit E un espace de distribution, (ECD, l'injection de E dans D'étant continue), H m un espace de fonction de l'espèce considérée dans le précédent exposé. On se propose de déterminer les opérateurs de convolution appliquant continuement H' dans E, c'est-à-dire les opérateurs linéaires continus de H' dans E qui sur G' C' M' sont des convolutions. L'espace de ces opérateurs, muni de la topologie de la convergence uniforme sur les parties équicontinues de H' sera noté

$$\underline{\text{Exemples}} : \mathcal{O}'_{\mathbb{C}}(\mathbb{O}'; \mathbb{O}') = \mathcal{E}' , \qquad \mathcal{O}'_{\mathbb{C}}(\mathcal{E}'; \mathbb{O}') = \mathbb{O}'$$

Théorème 1 - Pour que $A \in \mathcal{O}'_{\mathbb{C}}(\mathcal{K}'^m_{\mathbb{C}}; E)$ il faut et il suffit que la fonction $A: (y \to \mathcal{C}(y)A)$ appartienne à $\mathcal{H}^m(E)$, $(\mathcal{T}(y)A_x)$ est la distribution A_y translatée de y.).

Démonstration: La condition est suffisante; en effet, si $\overrightarrow{A} \in \mathcal{H}^m(E)$ $T(\overrightarrow{A})$ a un sens, appartient à E, et $\overrightarrow{A} \to T(\overrightarrow{A})$ est continue de \mathcal{H}^{m} dans E; de plus, pour e' = $\forall \in \mathcal{D} \subset E! : \langle T(\overrightarrow{A}), \forall \rangle = T(\langle \overrightarrow{A}, \forall \rangle) =$ = T_y ($\nabla_y A(\forall)$) = $T(\overrightarrow{A} \times \psi) = (T \times A)(\psi)$ si $T \in \mathcal{E}^{!}$, C.Q.F.D.

La condition est nécessaire. Si en effet $A \in \mathcal{O}_{\mathbb{C}}^{!}(\mathcal{H}^{m}; E)$, comme est $\mathbb{C}^{m}(\mathcal{H}^{m}; \mathbb{C})$, $\mathbb{C}^{m}(\mathcal{H}^{m}; \mathbb{C})$, a doit appartenir à $\mathbb{H}^{m}(E)$; mais $A \circ S$ est la fonction $\mathbb{C}^{m}(\mathcal{H}^{m}; \mathbb{C})$ est la fonction $\mathbb{C}^{m}(\mathcal{H}^{m}; \mathbb{C})$.

III. Transformée de Fourier.

Montrons d'abord que $\exp(-2i\pi \langle \hat{x}, \hat{\hat{y}} \rangle) \in S_y(S_x)$. Tout d'abord cette fonction de y prend ses valeurs dans S_x , et même dans S_x . Ensuite elle est indéfiniment dérivable en tant que fonction à valeurs dans S_x , donc a fortiori à valeurs dans S_x ; comme toutes ses dérivées (en tant que fonction à valeurs dans S_x) sont des fonctions continues de y à valeurs dans S_x , elle est indéfiniment dérivable en tant que fonction à valeurs dans S_x . Reste à voir qu'elle est scalairement dans S_y ; c'est équivalent au fait que la transformation de Fourier S_x applique S_x dans S_y . On en déduit :

<u>Proposition 1</u>. $\mathcal{F}_y = T_y \quad (\exp(-2i\pi < x,y))$ définit une application linéaire continue de $\mathcal{G}_y \quad \text{dans} \quad \mathcal{S}_x \cdot$

IV. Structure de certains espaces d'applications linéaires. Le théorème des noyaux.

On note par N(ϕ) = $\int_{x,y}^{y} N_{x,y}$, ϕ (x,y) dx dy la forme linéaire qu'il définit sur $\mathcal{O}_{x,y}$.

Soit $\phi \in \Omega_x \times \mathcal{O}_y$ (ϕ (x,y) = u(x),v(y)). N définit alors sur $\mathcal{O}_x \times \mathcal{O}_y$

une forme bilinéaire séparément continue. $N(\hat{u} \otimes v)$ est une application linéaire continue de $\widehat{\mathbb{O}}_{x}$ dans C. C'est donc un élément de $\widehat{\mathbb{O}}_{x}'$. De plus $v \to N(\hat{u} \otimes v)$ est continue de $\widehat{\mathbb{O}}_{y}$ dans $\widehat{\mathbb{O}}_{x}'$ faible. N définit donc un élément $N(\hat{u} \otimes \hat{v})$ de $\mathcal{L}(\widehat{\mathbb{O}}_{y}; \widehat{\mathbb{O}}_{x}')$.

On note aussi Nøy = N(Q \otimes v) et uøN = N(u \otimes v), Nøv définit l'intégration partielle par rapport à y. On la notera $\int N_{\vec{X},y}v(y)dy = N \circ v$ On a donc la

Proposition 2. Tout noyau $N_{x,y}$ de $O_{x,y}^{!}$ définit une application linéaire continue de O_{y} dons $O_{x,y}^{!}$, à savoir $N(a \cdot \hat{v})$ qui est aussi donnée par $(v \in \mathcal{O}_{y})$: $v \longrightarrow \int N_{x,y} v(y)$ dy = $N \circ v$.

Le théorème de Fubini est valable pour les intégrations partielles , c'est-à-dire < u \circ N , v > = < u , N \circ v > .

Remarque: Continuité de \emptyset_y fort dans \emptyset_x fort, de \emptyset_y faible dans \emptyset_x faible, de \emptyset_y fort dans \emptyset_x faible, sont équivalentes, car \emptyset_y et \emptyset_x ont la topologie γ .

Nous nous proposons d'établir une réciproque de la première partie de cette proposition. Nous traiterons d'abord quelques cas particuliers.

A) \mathcal{L}_{ϵ} ((\mathcal{H}_{y}^{n}); \mathcal{H}_{x}^{m}) ou \mathcal{H}_{x}^{m} et \mathcal{H}_{y}^{n} sont deux espaces de fonctions du type

On a :

$$\mathcal{L}_{\epsilon}((\mathfrak{N}^{\mathtt{n}}_{\mathtt{y}})^{\mathtt{!}}_{\mathtt{o}}\;;\;\mathfrak{M}^{\mathtt{m}}_{\mathtt{x}})\approx(\mathfrak{N}^{\mathtt{n}}_{\mathtt{y}})\,\widehat{\boldsymbol{\vartheta}}_{\epsilon}\;(\mathfrak{M}^{\mathtt{m}}_{\mathtt{x}})\!\approx\!\mathfrak{X}^{\mathtt{m}}_{\mathtt{x},\mathtt{y}}\!\approx\!\widetilde{\mathfrak{N}}^{\mathtt{n}}_{\mathtt{y}}(\mathfrak{M}^{\mathtt{m}}_{\mathtt{x}})\;.$$

Soit $L \in \mathcal{L}((\mathfrak{N}_y^n)^n; \mathfrak{N}_x^m)$, elle définit un élément $N(\hat{\mathfrak{L}}, \hat{\mathfrak{I}}) \in \mathcal{H}_{x,y}^m$ associé aussi à $\widehat{N} = N(\hat{\mathfrak{L}}, \hat{\hat{\mathfrak{I}}}) \in \widehat{\mathcal{H}}_x^m$ tol que $L(T) = T(\widehat{N}) = \int N(\hat{\mathfrak{L}}, y) T_y dy$, $N(\hat{\mathfrak{L}}, \hat{\mathfrak{I}})$ est le noyau de L,

Une aplication L de \mathcal{E}_y dans \mathcal{E}_x sera dite régularisante. De $\mathcal{E}_x \otimes \mathcal{E}_y = \mathcal{E}_{x,y}$ nous tirons donc la proposition :

Proposition 3 - Toute application régularisante est définie par un noyau, fonction indéfiniment différentiable, $N(\hat{x},\hat{y})$. Si T_y est une distribution à support compact, sa régularisée par N est définie par l'intégrale $\int N(\hat{x},y) \ T_y \ dy$.

On a $N(\hat{x}, \hat{y}) = L \circ \vec{S}$ ou $\vec{\delta} \in \mathcal{C}_y(\mathcal{E}_y)$

donc $L(\delta_y(b)) = N(x,b)$ et $L(\delta_y(b))(a) = N(a,b)$

B) $\mathcal{L}_{c}(\mathfrak{N}_{y}^{n};\mathfrak{M}_{x}^{m})$ ou \mathfrak{M}_{x}^{m} et \mathfrak{N}_{y}^{n} sont deux espaces de fonctions du

type \mathcal{H}^m , \mathcal{H}^n_y étant en outre bornologique.

Soit E un espace vectoriel topologique complet tel que E_c^* soit complet, et que les parties compactes de E_c^* soient équicontinues (donc $(E_c^*)^*_c = E$). On a alors :

 $\mathcal{L}_c(\texttt{E}\;;\mathfrak{M}^m_x) \approx \mathcal{L}_{\mathcal{E}}\; ((\texttt{E}^!_c)_c^!\;;\mathfrak{M}^m_x) \approx \mathcal{L}_{\mathcal{E}}\; ((\mathfrak{M}^m_x)_c^!\;;\texttt{E}^!_c) \approx \mathfrak{M}^m_x\; \hat{\otimes}_{\epsilon}\; \texttt{E}^!_c \approx \mathfrak{M}^m_x (\texttt{E}^!_c)$ Les conditions imposées à <code>E</code> seront manifestement remplies si <code>E</code> est tel que tout ensemble <code>H</code> de <code>E^!</code> équicontinu sur les parties compactes de <code>E</code> est équicontinue, ce qui est lorsque <code>E</code> est bornologique. [Soit en effet alors <code>E^!</code> son dual, et <code>HCE^!</code> équicontinu sur tout compact de <code>E</code> . Soit <code>V</code> un voisinage convexe équilibré de zéro dans <code>C</code> (un disque) , et <code>S</code> une suite quelconque de <code>E</code> qui tende vers zéro. Par hypothèse ($\bigcap_{h\in H} h^{-1}(V))\cap (\;S\cup \{0\})$ est l'intersection de <code>SU(0)</code> et d'un voisinage de zéro dans <code>E</code> , donc $\bigcap_{h\in H} h^{-1}(V)$, convexe, équilibré, absorbe <code>S</code> , donc tout borné de <code>E</code> , et est <code>h \in H</code> en conséquence un voisinage de zéro dans <code>E</code>] .

Soit $L \in \mathcal{L}(\mathfrak{N}_y^n;\mathfrak{M}_x^m)$, tL so transposée et $N(\mathfrak{X})_y = N \in \mathfrak{M}_x^m((\mathfrak{N}_y^n)_c^i)$ l'élément associé à L. $N(\mathfrak{X})_y$ est le noyau de L. Pour toute distribution $T_x \in \mathfrak{M}_x^m$ on a ${}^tL(T_x) = T_x(N(x)_y) = \int N(x)_y T_x dx$. Pour toute $\varphi \in \mathfrak{N}_y^n$, on a

$$\langle L(\varphi(\mathfrak{H})), T_{x} \rangle = \langle \varphi(\mathfrak{H}), T_{x}(\mathfrak{N}) \rangle = T_{x}(\langle \varphi(\mathfrak{H}), \mathfrak{N} \rangle)$$

 $\mathtt{L}(\varphi(\mathbf{\hat{y}}))$ est donnée par l'intégrale partielle

$$L(\varphi(\mathfrak{H})) = \int N(\mathfrak{H})_{y} \varphi(y) dy = \langle \varphi(\mathfrak{H}), \mathbb{N} \rangle.$$

On a aussi :

$$L(\varphi(\hat{y}))(a) = \int (N(a))_y \varphi(y) dy$$

 $N(x)_{v}$ est le noyau de L.

C'est bien un noyau. C'est en effet une fonction continue de $x \in X$ à valeurs dans \emptyset_y . On définira $N(\phi)$ pour $\phi(x,y) \in \emptyset_{x,y}$ par $N(\phi) = \int_X dx \int_Y K(x)_y \phi(x,y) dy$.

Comme $\varphi\left(\hat{x},\hat{y}\right)$ est continue de x à valeurs dans Ω_{y} , et $N\left(\hat{x}\right)_{y}$ continue de x à valeurs dans Ω_{y} , l'intégrale en dy définit une fonction continue de x à support compact, donc $N(\varphi)$ a un sens. Si φ converge vers 0 dans $\Omega_{x,y}$ en gardant son support dans un compact fixe $H\times K$ de $X\times Y$; $\varphi\left(x,\hat{y}\right)$ converge vers 0 dans Ω_{y} uniformément par rapport à x,

 $N(x)_y$ reste borné dans O_y lorsque x parcourt H, donc l'intégrale en y converge vers O uniformément par rapport à x, en gardant son support dans H, donc $N(\phi) \to O$. Donc N est bien une distribution $\in O_{x,y}$, c'est-à-dire un noyau.

 $\frac{\text{Cas particulier}}{\text{tions de }\mathcal{L}\left(\mathcal{O}_{y}\;;\;\mathcal{E}_{x}\right)} \approx \mathcal{E}_{x}(\mathcal{O}_{y}^{\;;}) = \mathcal{E}_{x}(\mathcal{O}_{y}^{\;;}) \;. \text{ Les applications de }\mathcal{L}\left(\mathcal{O}_{y}\;;\;\mathcal{E}_{x}\right) \text{ sont dites semi-régulières en }x\;.$

Proposition 4. Toute application L semi-régulière en x est définie par un noyau fonction indéfiniment dérivable de x à valeurs dans $O(\frac{1}{y})$. Si $\varphi \in O(\frac{1}{y})$, et $N(\hat{x})_y$ est le noyau de L on a : $L(\varphi(\hat{y})) = \int N(\hat{x})_y \varphi(y) dy$

c) $\mathcal{L}_{\mathcal{E}}((\mathfrak{M}^m_x)^!_c; (\mathfrak{N}^n_y)^!_c) \approx \widetilde{\mathfrak{M}}^m_x((\mathfrak{N}^n_y)^!_c)$ lorsque \mathfrak{M}^m_x et \mathfrak{N}^n_y sont des espaces du type \mathcal{H}^m , \mathcal{N} bornologique.

Ce cas a été traité tout à l'heure dans B), avec $L(S_y(b)) = N_x(b)$. Inversons donc les rôles de x et y. Alors si $L \in \mathcal{L}_{\xi}((\mathcal{M}_y^m)_c^!; (\mathcal{N}_x^n)_c^!)$ il est défini par un noyau $N_x(\hat{y}) \in \mathcal{M}_y^m((\mathcal{N}_x^n)_c^!)$.

Cas particulier :

 $\mathcal{L}_{\xi}\left(\mathcal{E}_{y}^{i};\Omega_{x}^{i}\right)=\mathcal{L}_{y}(\Omega_{x}^{i})\text{ , N est alors un noyau semi-régulier en }y\text{ .}$

Le théorème général des noyaux. Il s'énonce :

Théorème 2 - Toute application linéaire continue de \mathbb{O}_y dans \mathbb{O}_x' est définie par un noyau, déterminé d'une manière unique. Soit L l'application, $\mathbb{O}_y' \in \mathbb{O}_y$ et $\mathbb{N}_{x,y}$ le noyau de L, nous avons $\mathbb{E}(\mathbb{Q}(\hat{y})) = \mathbb{N}_{x,y} \mathbb{Q}(y)$ dy L'unicité du noyau est évidente, car L détermine \mathbb{N} sur $\mathbb{O}_x \otimes \mathbb{O}_y$, dense dans $\mathbb{O}_{x,y}$.

Démonstration . Elle se fait en quatre étapes :

1°) Le $\mathcal{L}(\mathcal{O}_{\mathbf{x}};\mathcal{E}_{\mathbf{x}}^{0})$. Co cas a été traité dans B).

N_{x,y} = N(x)_y $\in \mathcal{L}_{\mathbf{x}}^{0}$ $\in \mathcal{O}_{\mathbf{y}}^{1}$. Pour $\varphi(\mathfrak{f}) \in \mathcal{O}_{\mathbf{y}}$ on a : N $\circ \varphi = \int_{\mathbf{x}}^{0} N(x)_{\mathbf{y}} \varphi(y) dy$.
2°) Le $\mathcal{L}(\mathcal{O}_{\mathbf{y}};(\mathcal{E}_{\mathbf{x}}^{m})')$. Soit $\varphi(\mathfrak{f}) \in \mathcal{O}_{\mathbf{y}}^{1}$. Nous nous ramènerons au cas précédent en régularisant $\mathcal{L}(\varphi)$. La solution élémentaire $\mathcal{E}_{\mathbf{k}}$ de l'équation de Laplace itérée $\Delta^{\mathbf{k}}$ sur \mathcal{R}^{n} est $\mathbf{r}^{2\mathbf{k}-n}$ à une constante près [c'est $((2\mathbf{k}-n)(2\mathbf{k}-2-n)\dots(4-n)(2-n)\cdot 2^{\mathbf{k}-1}\cdot (\mathbf{k}-1)\cdot \frac{2(\sqrt{n})^{n}}{\Gamma(n/2)}$ $\mathbf{r}^{2\mathbf{k}-n}$] pour n impair.

Pour n pair, nous avons une formule analogue r^{2k-n} étant remplacé par r^{2k-n} log r.

De toute façon, pour k assez grand \mathbf{E}_k est une fonction m fois continuement différentiable. Alors, dans ces conditions, $\mathbf{E}_k \star \mathbf{L}(\varphi)$ est un élément de \mathbf{E}_x^0 , donc $\mathbf{F}_k \star \mathbf{L}(\varphi)$ est un élément de \mathbf{E}_x^0 (\mathbf{O}_y ; \mathbf{E}_x^0) donc est défini par un noyau $\mathbf{N} \in \mathbf{E}_x^0 \, \widehat{\boldsymbol{\otimes}}_{\mathbf{F}} \, \mathbf{O}_y^{\mathbf{F}}$.

 $\mathbf{E}_k \star \mathbf{L}(\phi) = \mathbf{N} \bullet \phi$. Si nous appliquons la formule de Poisson, nous obtenons alors :

 $L(\varphi) = \Delta^k E_k * L(\varphi) = \Delta^k (E_k * L(\varphi)) = \Delta^k (N_{x,y} \cdot \varphi) = (\Delta_x^k N_{x,y}) \cdot \varphi,$ donc L est bien définic per un noyau.

3°) Le L(\mathcal{E}_y ; \mathcal{E}_x). L'est dite "compactifiante". La forme bilinéaire L'sur $\mathcal{E}_y \times \mathcal{E}_x$ définie par L'est séparément continue; \mathcal{E}_x et \mathcal{E}_y étant des espaces du type (F), L'est continue. Donc il existe un ouvert de \mathcal{E}_y appliqué par L'en un borné de \mathcal{E}_x . Mais une partie bornée de \mathcal{E}_x est plongée dans un certain \mathcal{E}_x^m et est bornée dans cet espace. Donc L'se prolonge en une application continue de \mathcal{E}_y dans un (\mathcal{E}_x^m)', elle définit donc un élément de \mathcal{E}_x (\mathcal{O}_y ; (\mathcal{E}_x^m)') (et elle est parfaitement définie par cet élément puisque \mathcal{O}_y est partout dense dans \mathcal{E}_y pour la topologie de \mathcal{E}_y).

L est donc définie par un noyau, d'après 2°)

On a aussi la :

Proposition 3 · Toute forme bilinésire (séparément) continue sur $\mathcal{E}_{\mathbf{x}} \times \mathcal{E}_{\mathbf{y}} \stackrel{\text{ezt définie par un noyeu}}{} \mathbb{N}_{\mathbf{x},\mathbf{y}} \in \mathcal{E}_{\mathbf{x},\mathbf{y}}$ ·

4°) L∈ℓ(0, ; 0'_x)

L définit une forme bilinéaire L sur $\Omega_{\mathbf{x}} \times \Omega_{\mathbf{y}}$, séparément continue. Soit A un ouvert relativement compact dans X (resp. B dans Y). Soit $\boldsymbol{\alpha}$ (\boldsymbol{x}) une fonction $\boldsymbol{\epsilon}$ $\Omega_{\mathbf{x}}$ telle que $\boldsymbol{\alpha}$ (\boldsymbol{x}) = 1 pour tout $\boldsymbol{x} \in A$; $\boldsymbol{\beta}$ (\boldsymbol{y}) une fonction $\boldsymbol{\epsilon}$ $\boldsymbol{\Omega}_{\mathbf{y}}$ telle que $\boldsymbol{\beta}$ (\boldsymbol{y}) = 1 pour tout $\boldsymbol{y} \in B$.

Soient maintenant $\varphi(\hat{x}) \in \Omega_x$ et $\psi(\hat{y}) \in \Omega_y$. Alors $L(\alpha(\hat{x}) \varphi(\hat{x}), \beta(\hat{y}) \psi(\hat{y}))$ est une forme bilinéaire sur $\mathcal{E}_x \times \mathcal{E}_y$ séparément continue. Elle est donc définie par un noyau $N_{x,y}(A,B)$. Si alors $C \supset A$, $D \supset B$, on a $N_{x,y}(A,B) = N_{x,y}(C,D)$ donc $A \times B$, car ils coincident sur $\Omega_x(A) \otimes \Omega_y(B)$ dense dans $\Omega_{x,y}(A \times B)$.

Par recollement des morceaux nous construisons un noyau définissant L.

Le théorème est démontré.

Remarque: La proposition 5 signifie aussi que $\mathcal{E}_x \otimes_{\mathbb{T}} \mathcal{E}_y$ et $\mathcal{E}_x \otimes_{\mathcal{E}} \mathcal{E}_y$ ont 1e même dual.

Nous verrons qu'ils sont identiques, et cela est lié au fait que & est nucléaire. (C'est précisément le théorème des noyaux qui est à l'origine du mot nucléaire).