@article{SLS_1959-1960__4__A16_0, author = {Zerner, Martin}, title = {In\'egalit\'es du type {Harnack}}, journal = {S\'eminaire Schwartz}, note = {talk:16}, pages = {1--7}, publisher = {Secr\'etariat math\'ematique}, volume = {4}, year = {1959-1960}, language = {fr}, url = {http://archive.numdam.org/item/SLS_1959-1960__4__A16_0/} }
Zerner, Martin. Inégalités du type Harnack. Séminaire Schwartz, Unicité du problème de Cauchy. Division des distributions, Tome 4 (1959-1960), Exposé no. 16, 7 p. http://archive.numdam.org/item/SLS_1959-1960__4__A16_0/
[1] A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. pures et appl., 9e série, t. 36, 1957, p. 235-249. | MR | Zbl
. -[2] An extension of E. Hopf's maximum principle with an application to Riemannian geometry, Duke math. J., t. 25, 1958, p. 45-56. | MR | Zbl
. -[3] Über die eindeutige Bestimtheit den Lösungen elliptischer Differentialgleichungen durch Anfangsvorgaben , Nachra Akad. Wiss. Göttingen, t. 11, 1956, p. 239-258. | MR | Zbl
. -[4] Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung von elliptischen Typus, Sitz. preuss. Akad. Wiss., t. 19, 1927, p. 147-152. | JFM
. -[5] O principe fragmena lindelëfa dlja rešenv elliptičeskikh uranenij, Doklady Akad. Nauk SSSR, t. 107, 1956, p. 508-511. | MR | Zbl
. -[6] O nekotorykh svo j stvakh rešenij elliptićeskikh uranenij, Doklady Akad. Nauk SSSR, t. 107, 1956, p. 640-643. | MR | Zbl
. -[7] Nekotorye voprosy kačestvennoj teorii elliptičeskikh i paraboličeskikh uravnenij, Uspekhi Mat. Nauk, N. S., t. 14, 1959, p. 21-85. | Zbl
. -[8] A strong maximum principle for parabolic equations, J. of Math. pure and appl., t. 6, 1953, p. 167-177. | MR | Zbl
. -[9] On the Harnack inequality for linear elliptic equations, J. Anal. math. Jérusalem, t. 4, 1954-1956, p. 292-308. | MR | Zbl
. -