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THE OKA-WEIL THEOREM IN LOCALLY CONVEX SPACES
WITH THE APPROXIMATION PROPERTY

by Jorge WIIIcA (*)

1. Introduction.

The classical Oka-Weil theorem asserts that every function which is holomorphiec
on a neighbourhood of a polynomially convex compact set K in En can be appro-
ximgted uniformly on K by polynomials. In this paper, we show that the Oka-Weil
theorem is still true in every quasi-complete locally convex space with the appro-
ximation propegty, thus improving earlier results of NOVERRAZ [5], LIGOCKA [1] and
SCHOTTENLOHER [7]. The proof of the theorem is very simple, being no more than a
straightforward consequence of a result of LIGOCKA [1]. 4s an application ef the
Oka-Weil theorem, we characterize the spectra of certain topological algebras of

holomorphic functions.

2. Elementary properties of polynomially convex sets.

Throughout this paper, the letter E denotes a locally convex space, which is
alwgys assumed to be complex and Hausdorff. We let ®P(E) denote the space of all
contimious polynomials on E , and we let %(U) denote the space of all holomor-
phic functions on an open subset U of E . We refer to NACHBIN [4] or NOVERRAZ [6]
for the basic properties of polynomials and holomorphic functions on infinite di-

mensional spaces.

2.1 Definition. - Given a compact set K < E , we define its polynomially convex
—_——
hull KE by

Rp={xeE; [P(x)| ¢ swy [P| , for a1 P € ®(E)} .

We will often write % instead of KE
The compact set K is said to be polynomially convex if R=x.

when the space E is tacitly understood.

The following easily proved remark is often useful.

2.2 Remark. - Let M be a vector subspace of E , with the induced topology. Then
kM c KEnM , for any compact set K c M , and equality holds, if M is a complemen-

ted subspace of E , i. e, if there exists a continuous projection of E onto M .

2.3 PROPOSITION ([6], lemma 2.1.2). - For each compact subset K of E , the polyno.
mially comvex hull R of K 1is contained in the closed, comvex hull of K .
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Proof. = Let L denote the closed, comvex hull of K , and let a £ L . By the
Hahn-Banach theorem, there exists a continuous linear form ¢ on E and a real
nmumber ¢ such that

Re (%) < 6 < Re p(a) , for all xeL .

Since the set (L) is bounded, we can find a closed disc D(r ; R) containing
p(L) and not containing ¢(a) . Then, P(x) = o(x) - ¢ defines a contimous poly-
nonial on E and

sup |P| ¢ sup; [P| <R < [P(a)] -
Hence a £ R, and therefore Rc L.

2.4 COROLLARY. - For each compact set K< E, the set R is alwgys precompact,

and is compact when E is quasi-complete.

2.5 Definition. — Let U be an open set in E .

(a) We say that U is polynomially convex if, for each compact set K < U , the

set R nU is bounded away from U , i. e. there exists a O-neighbourhood V
such that R nU + Vc U (in view of corollary 2.4, when E is quasi-complete,
this is equivalent to saying that R nU is compact).

(b) We say that U is strongly polynomially convex if, for each compact set

KcU, the set R is contained in U .

2.6 Remark. - If E is quasicomplete, then clearly every strongly polynomially
convex open set in E is polynomially convex. It is not known whether the converse
holds in general. See corollary 3.3 below for a partial converse.

2.7 PROPOSITION.

(a) Bvery comvex open set is strongly polynomially convex.

(b) Every open set of the form U= {x e E; |P(x)| <1} , where P € P(E) , is
strongly polynomially convex.

(c) The intersection of two (strongly) polynomially comvex open sets is a (strone

gly) polynomially comvex open set.

Proof. - (b) and (c) are trivial. In view of proposition 2.3, to show (a) it
suffices to show that theclosed convex hull of each compact set K < U is also
contained in U . Let V be a convex O-neighbourhood such that K+ Vc U . If L
demotes the comvex hull of X , then clearly L + VcU too. Hence LcL+VecU.

3+ The Oka-Weil theorem.

The key of the proof of the Oka-Weil theorem is the following result of LIGOCKA
([1], proposition 2.1).
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3,1 THEOREM. — Let E be a quasi-complete locally convex space, and let K be a

polynomially convex compact subset of E o Then, every open neighbourhood of K

contains another open neighbourhcod of K which is strongly polynomially convexe

Proof. - Let us write, for each P € #(E) ,
bp = {x€E; |P(x)| <1}, Bp={xek; |P(x)| < 1} -

Let U be an open neighbourhood of K and let L denote the closed comvex hull
of K . Then, for each x € L \ U, there exists P € ®(E) such that

supy |P| <1 < |P(x)] .
Hence by compactness of L \ U, we can find P, , +se , P € ®(E) such that
(1) K< N eee N
A.Pl APn
and

L\U<=C(Bp U ulBy

1 n
and the last written inclusion implies
(2) L nB N ese NB cU .
P1 Pn
We claim that
(3) (L+Wn B, Ne:eo nB, U,
P1 Pn

for some comvex open O-neighbourhood W . Let (wa) be a base of convex open
O-neighbourhoods and let us assume that, for each « , there exists a point
x, € (L + Wa) NBp Neee nBp nCu .
1 n
For each « , we choose v, € L such that X, =7, € wa e Since L is compact,
the net (ya) has a subnet (y ) which converges to a point y €L . But, then
the corresponding subnet (xb) of (xa) also comverges to y , and then, by (2),

yeLln BP n...nBP cU .
1 n

But, this is impossible, for X, ~)y , and X £ U, for every B . Thus (3)

is proved. We then set
V=(L+W Nh, N eee NA, o
A.Pl an

It follows from (1) and (3) that K<V c U, and in view of proposition 2.7, V
is strongly polynomially convex.
Now the proof of the Oka-Weil theorem is straightforward.

3.2 Oka~Weil THEOREM. - Let E be a quasi-complete locally convex space with the
approximation property, and let K be a polynomially convex compact subset of E .

Then, every function, which is holomorphic on an open neighbourhood of K , can be

approximated uniformly on K by contimious polynomials on E .
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Proof. - Let f e %#(U) , where U 1is an open neighbourhood of X . By theorem
3.1, we may assume that U is strongly polynomially convex. Let ¢ >0 be given.
Then, one can eesily find an open O-neighbourhood V such that K + VcU and

|£(y) - £(x)| <¢, forxeK, yex+ V.,

Since E has the approximation property, there exists a continuous linear opera-—
tor T: B~ E, of finite rank, and such that

T(x) ~x eV, for every x €K .
Then, it follows that
|£f o T(x) = £(x)| < ¢ , for every x €K,

and also th/at\T(K) cK+VecU . Since U 1is strongly polynomially convex, we
get that T(K)E c U and hence

//\ PN

P

and the restriction of £ to U n T(E) is holomorphit on a neighbourhood of L
in T(E) . Then, by the classical Oka-Weil theorem, there exists P e ®(T(E)) such
that

« Then L is a polynomially comvex compact subset eof T(E)

Sulef"PlSe'
Then P o T € P(E) and
supe |£ =P oT| gsupy [f=f oT| + supe |£oT =P oT| <2

concluding the proof.

3.3 COROLLARY. - Let E be a quasi-complete locally convex space with the spproxi-

mation property. Then, every polynomially convex open set in E is strongly poly-

nomially convex.

Proof. = The proof is classical. Let U be a polynomially convex open set in E ,
and let K be a compact subset of U . Then, the compact set K may be written as
the union of the disjoint compact sets R AU and R \ U . We define a function £
to be equel to zero on a neighbourhood of & AU and equal to one on a neighbour-
hood of R \ U « Then, f is holomorphic on a neighbourhood of k , and, by theorem
3.2, there exists P e P(E) such that

- supg lf-Pl <-% .

Then, for any point a € R \U,

1
supe |P| <5 < [P(a)] ,

a contradiction, unless K \ U is empty.
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4. Elementary properties of topological algebras.

By an algebra, we always mean a commutative algebra over the complex numbers, and
having an identity element. By a complex homomorphism of an algebra 4 , we mean
an algebra homomorphism T : L -3 C with T(1) =1 .

4.1 Definition. - 4 topological algebra is an algebra and a topological vector space

such that ring multiplication is separately continuous. 4 locally convex algebra

is a topological algebra which is a locally convex space. 4 locally multiplicative+

ly convex algebra is a topological algebra which has a base of convex and idempo-

tent neighbourhoods of zero ( V is idempotent if V2 cV). 4 Q-algebra is a
topologicel algebra where the invertible elemmnts form an open set. The spectrum
of a topological algebra A is the set of all continuous complex homomorphisms of
.A .

4.2 PROPOSITION. - Let (Aa) be a family of subalgebras of an algebra A , direc-

ted under inclusion, and satisfying LA = U Aa o Let us assume that each ‘["a is a

locally convex algebra and that each inclusion mapping Aoz e AB is contimuous.
Let A be endowed with the locally convex inductive topology with respect to the

inclusion mappings Aa < A . Then :

(a) & is a locally comvex algebra.

(b) If each L, 1is a Banach algebra and if each inclusion mapping A ) AB‘

has norm not gregter than one, then A 1is a Q-algebrae.

Proof.

(a) It suffices to show that ring multiplication in A is separately contimous.

Given y € L , we choose % such that y € jl.a « Then the mapping
0
IR \
X € h, — Xy € Aoz

is continuous, for every o > «

0 » and it follows that the mapping x € A - xy € 4

is also contimious.

(b) For each «o , let Voz denote the open unit bell of Aoz » Since Aoz is a
Banach algebra, 1 + h 1is invertible in Aoz , for every h e Voz e Let V=U Voz .
Then V 1is a convex O-neighbourhood in 4L, and 1 + h 1is invertible in A , for
every heV .Let x € L be invertible. Choose a O~neighbourhood U in A such
that x-l heV, forevery heU.Then, x+ h = x(1 + x_l h) is invertible in

A, forevery helU.

4.3 PROPOSITION. - Let (Aa) be a familly of locally convex algebras and, for each
o, let m, A ——}Aa be an algebra homomorphism of an algebra A into Aa . If

4 1is endowed with the projective topology with respect to the mappings T, 9 then

L 1s also g locally convex algebra.

Proof. - It suffices to show that ring multiplication in A4 1s separately conti-

mous. If y € i, then, for each « , the mapping = (x) € A, --—ana(x) na(y) €4,
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is continuous, and it follows that the mapping x € E — xy € &4 1s also comtinuous

5. Topological algebras of holomorphic functions.

For any open set V< B, we let #°(V) denote the Banach space of all bounded
holomorphic functions on V with the norm of the supremum. For any compact set
K<cE, we define #(K) , the space of all holomorphic germs on K , as the local-
ly convex inductive limit of the Banach spaces #®°(V) , where V varies among the
open neighbourhoods of X . Then, from proposition 4.2, we get at once the following

proposition.

5.1 PROPOSITION. — %#(K) 1is always a locally convex glgebra and a Q-algebra.

Let U be any open set in E . /4 semi-norm p on #(U) is ported by a compact
set K cU if, for each open set V , with K<V c U, there exists a positive
constant C such that p(f) ¢ C sup |£] , for every f e %(U) . The topology L
introduced by NACHBIN [4], is the locnlly comvex topology on #(U) generated by

all semi-norms which are ported by compact sets.

5.2 THEOREM. - (%(U) , Tw) is always a locally convex algebra.

Proof. — [2] (lemma 5.3) tells us that To is the projective topology with res-
pect a certain family of algebra homomorphisms my $ ®(U) — }QK(U) , where each
w (U) is an inductive limit of normed algebras. The conclusion then follows from

propositions 4.2 and 4.3.

5.3 Remark. - If E is metrizable, then both #(K) and (%(U) , Tw) are locally
multiplicatively convex algebras : see [2], theorems 7.1 and 7.2. We do not know

whether this remains true for non-metrizable E .

In [3], we characterized the spectra of #(K) and (%(U) , Tw) in the case where
K and U are polynomially convex and E is a Fréchet space with the approximation
property. To obtain those results, we used a version of the Oka-Weil theorem in
Fréchet spaces with the approximation property due to SCHOTTENLOHER [7]. If one
uses theorem 3.2 imstead, then the same proof works in every quasi-complete local-

ly convex space with the approximation property. Thus, we get the following theorem,

5.4 THEOREM. - Let E be a quasi-complete locally convex space with the gpproxima-

tion property, and let K be a polynomially convex compact subset of E . Then,

for each complex homomorphism T of #(K) , there exists a unique point a€ K
such that T(f) = f(a) , for every f e ®(XK) .

5.5 THEOREM. - Let E be a gquasi-complete locally convex space with the spproxima-—

tion property, and let U be a polynomially convex open subset of E . Then, for

each continuous complex homomorphism T of (®(U) , Tw) , there exists a unique
point a € U such that T(f) = f(a) , for every f € %(U) «
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