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4e année, 1977/78, n° 3, 7 p.

1. Introduction.

The classical Oka-Weil theorem asserts that every function which is holomorphic
on a neighbourhood of a polynomially convex compact set K in Cn can be appro-

ximated uniformly on K by polynomials. In this paper, we show that the Oka-Weil

theorem is still true in every quasi-complete locally convex space with the appro-
ximation property, thus improving earlier results of NOVERRAZ [5], LIGOCKA [1] and
SCHOTTENLOHER [7]. The proof of the theorem is very simple, being no more than a

straightforward consequence of a result of LIGOCKA an application ðf the

Oka-Weil theorem, we characterize the spectra of certain topological algebras of

holomorphic functions.

2. Elementary properties of polynomially convex sets. ,

Throughout this paper, the letter E denotes a locally convex space, which is

always assumed to be complex and Hausdorff. We let denote the space of all

continuous polynomials on E , and we denote the space of all holomor-

phic functions on an open subset U of E. We refer to NACHBIN [4] or NOVERRAZ [6]
for the basic properties of polynomials and holomorphic functions on infinite di-

mensional spaces.

2.1 Definition. - Given a compact set K c. E , we define its polynomially convex
hull KE by

RE = ~x E E ; sup ~ for all P E 
E 
A A 

K

We will often write K instead of when the space E is tacitly understood.

The compact set K is said to be polynomially convex if ft = K .

The following easily proved remark is often useful.

2.2 Remark. - Let M be a vector subspace of E, with the induced topology. Then

’M c *~g n M , for any compact set K c M ~ and equality holds, if M is a complemen-
ted subspace of E , i. e. if there exists a continuous projection of E onto M .

2.3 PROPOSITION ([6]~ lemma 2.1.2). - For each compact subset K of E ~ the polyno-
mially convex hull ~ o f K i s cont ained in the closed, convex hull o f K .

( ) Texte regu en Janvier 1979.

Jorge MUJICA, Instituto de Matematico, Universidade Estadual de Campinas, Caixa
Postal 1170, 13100 So P. 
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Proof. - Let L denote the closed, convex hull of K ~ and let a fi L . By the
Hahn-Banach theorem, there exists a continuous linear form m on E and a real

number e such that

Since the is bounded, we can find a closed disc D(r ; R) containing
and not containing (p(a) . Then, P(x) = 4~ (x) .. defines a continuous poly-

nomial on E and

Hence and therefore 1t c L .

2.4 COROLLARY. - For each compact set K ~ E , the set K is always precompact,
and is compact when E is quasi-complete.

2.5 Definition. - Let U be an open set in E.

(a) We say that U is polynomially convex if, for each compact set K ~ U , the

set  n U is bounded away from i. e. there exists a 0-neighbourhood V

such that ~ n U + V c U (in view of corollary 2.4, when E is quasi-complete,
this is equivalent to saying that ~ n U is compact).

(b) We say that U is strongly polynomially convex if, for each compact set
the set  is contained in U .

2.6 Remark. - If E is quasicomplete, then clearly every strongly polynomially
convex open set in E is polynomially convex. It is not known whether the converse

holds in general. See corollary 3.3 below for a partial converse.

2.7 PROPOSITION.

(a) Every convex open set is strongly polynomially convex.

(b) Every open set of the form U = (x ~ E ; Ip(x)1  1} , where P ~ (P(E) ~ is
strongly polynomially convex.

(c) The intersection of two (strongly) polynomially convex open sets is a (strong
polynomially convex open set.

Proof. - (b) and (c) are trivial. In view of proposition 2.3, to show (a) it

suffices to show that the closed convex hull of each compact set K c U is also

contained in U . Let V be a convex 0-neighbourhood such that K + V cr U . If L

demotes the convex hull of K ~ then clearly L + V  U too. Hence L c L + V cU.

3. The Oka-1rleil theorem.

The key of the proof of the Oka-Well theorem is the following result of LIGOCKA

([l]~ proposition 2 . 1 ) .
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3.1 THEOREM. - Let E be a quasi-complete locally convex space, and let K be a

polynomially convex compact subset of E. Then, every open neighbourhood of K

contains another open neighbourhood of K which is strongly polynomially convex.

Proof. - Let us write, for each P E P(E) ,

Let U be an open neighbourhood of K and let L denote the closed convex hull

of K . Then, for each x E L B U , there exists P E @(E) such that

Hence by compactness of L B U , we can find P 1 ’ ... , P E such that

and

and the last written inclusion implies

We claim that

for some convex open 0-neighbourhood W. Let ~W ~ be a base of convex open
a

0-neighbourhoods and let us assume that, for each there exists a point

For each ~ ~ we choose y 
a 

e L such that x - a 
.- y 

cu 
E B1 

a 
. Since L is compact,

the net (y ) has a subnet (y ) which converges to a point y ~ L . But, then

the corresponding subnet (x ) of (x ) also converges to y , and then, by (2) ,

yELn 1 1 n... n Cu.
But, this is impossible, for x 2014~y ~ and x ~ U , for every j3 . Thus (3)

is proved. We then set

V = (L + W) n A? n... 
It follows from (1) and (3) that K U , and in view of proposition 2.7, V

is strongly polynomially convex.

Now the proof of the Oka-Weil theorem is straightforward.

3.2 Oka-Weil THEDREM. - Let E be a quasi-complete locally convex space with the

approximation property, and let K be a ,polynomially conv~ex compact subset of 

Then, every function, which is holomorphio on an open neighbourhood of K , can be

approximated uniformly on K by continuous polynomials on E.
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Proof. - Let f e where U is an open neighbourhood of K . By theorem

3.1, we may assume that U is strongly polynomially convex. Let e &#x3E; 0 be given.

Then, one can easily find an open O-neighbourhood V such that K + V  U and

1 e , for x ~ K , yex+V .

Since E has the approximation property, there exists a continuous linear opera-
tor T : E 2014~ E ~ of finite rank, and such that

Then, it follows that

and also that T (K) c K + V cU. Since U is strongly polynomially convex, we
/~

get that T(K)’E C U and hence

_ 
- .

. 

Set L = Then L is a polynomially convex compact subset ef T (E)
and the restriction of f to U n T(E) is holomorphic on a neighbourhood of L

in T(E) . Then, by the classical Oka-Weil theorem, there exists P E ~’(T (E~ ~ such

that

Then

concluding the proof.

3.3 COROLLARY. - Let E be a quasi-complete locally convex sp ace with the approxi-
mation property. Then, every polynomially convex open set in E is strongly poly-
nomially convex.

Proof. - The proof is classical. Let U be a polynomially convex open set in E,
and let K be a compact subset of U . Then, the compact set K may be writt en as

the union of the disjoint compact sets K n U and K B U . We define a function f

to be equal to zero on a neighbourhood of  n U and equal to one on a neighbour-
hood of 9 1 U . Then, f is holomorphic on a neighbourhood and, by theorem

3.2, there exists P E such that

Then, for any point 

a contradiction, unless ~ B U is empty.



3-05

4. Elementary properties of topological algebras. 
’

By an algebra, we always mean a commutative algebra over the complex numbers, and

having an identity element. By a complex homomorphism of an algebra A, we mean

an algebra homomorphism T : A 2014~ 0 with T (1) = 1 .

4.1 Definition. - [1. topological algebra is an algebra and a topological vector space
such that ring multiplication is separately continuous. A locally convex algebra
is a topological algebra which is a locally convex space. li locally multiplicative*.

ly convex algebra is a topological algebra which has a base of convex and idempo-
tent neighbourhoods of zero ( V is idempotent if V c V ). A Q-algebra is a

topological algebra where the invertible elements form an open set. The spectrum
of a topological algebra A is the set of all continuous complex homomorphisms of

1, .

4.2 PROPOSITION. - Let (A ) be a family of sub algebras of an algebra A , direc-
ted under inclusion, and satisfying ll. = U A . Let us assume that each A is a
-201420142014201420142014201420142014201420142014201420142014201420142014201420142014~201420142014201420142014201420142014201420142014SL201420142. u 20142014201420142014201420142014201420142014201420142014201420142014201420142014201420142014201420142014 

locally convex algebra and that each inclusion mapping A 2014~-) A is continuous.

Let A be endowed with the locally convex inductive topology with respect to the

inclusion mappings A ~2014) A . Then :

(a) A is a locally convex algebra.

(b) If A03B1 is a Banach algebra and if each inclusion mapping A 
G 

~ A03B2

has norm not greater than then ii is a Q-algebra.

Proof.

(a) It suffices to show that ring raultiplication in 1~ is separately continuous.

Given we choose c~ such that y E A 
~0 

. Then the mapping

is continuous, for every c~ and it follows that the mapping x E A - xy G A

is also continuous.

(b) For each 03B1 , let V 
a 

denote the open unit bell of Since A 
a 

is a

Banach algebra, 1 + h is invertible in A03B1 , for every h e V . Let V = U V .

Then V is a convex 0-neighbourhood in A , and 1 + h is invertible in A , for

every h E V . Let x E A be invertible. Choose a 0-neighbourhood U in 11. such

that x -1 h E V , for every h E U . Then, x + h = x(1 + x -1 h) is invertible in

J1 , for every h E U .

4.3 PROPOSITION. - Let (A ) be a familly of locally convex algebras and, for each

let n : A be an algebra homomorphism of an algebra r If

.b. is endowed with the projective topology with respect to the mappings 03C003B1 , then

A is also a locally convex algebra.

Proof. - It suffices to show that ring multiplication in A is separately conti-

nuous. If y e A , then, for each 03B1 , the mapping 03C003B1(x) ~ A (x) 03C003B1 (y) ~ A
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is continuous, and it follows that the mapping x e E - xy E A is also continuous

5. Topological algebras of holomorphic functions.

For any open set V  E , we let denote the Banach space of all bounded

holomorphic functions on V with the norm of the supremum. For any compact set

K c E ~ we define ~(K) , the space of all holomorphic germs on K, as the local-

ly convex inductive limit of the Banach spaces K~(V) ~ where V varies among the

open neighbourhoods of K 0 Then, from proposition 4.2, we get at once the following

proposition.

5.1 PROPOSITION. - is always a locally convex algebra and a Q-algebra.

Let U be any open set in E. A semi-norm p on is ported by a compact

set K c U if, for each open set V , with U , there exists a positive

constant C such that p(f)  C |f| , for every f E K(U) . The topology 03C9 ,
introduced by NACHBIN [4]~ is the locally convex topology on generated by

all semi-norms whi ch are ported by compact sets.

5.2 THEOREM. - (?~(U) ~ T ) is always a locally convex algebra.

Proof. - [2] (lemma 5.3) tells us that 1"w is the projective topology with res-

pect a certain family of algebra homomorphisms x(U) 2014~ Jf(U) , where each
K(U) is an inductive limit of normed algebras. The conclusion then follows from

propositions 4.2 and 4.3.

5.3 Remark. - If E is metrizable, then both K(K) and (;re(u), T ) are locally

multiplicatively convex algebras : see [2], theorems 7.1 and 7.2. We do not know
whether this remains brue for non-metrizable E .

In [3]~ we characterized the spectra of and (1ll(U) , T r ) in the case where

K and U are polynomially convex and E is a Frechet space with the approximation

property. To obtain those results, we used a version of the Oka-Weil theorem in

Frechet spaces with the approximation property due to SCHOTTENLOHER [7] . If one

uses theorem 3.2 instead, then the same proof works in every quasi-complete local-

ly convex space with the approximation property. Thus, we get the following theorem"

5.4 THEOREM. - Let E be a quasi-complete locally convex space with the roxima-

tion property, and let K be a polynomially convex compact subset of E . Then,

for e ach complex homomorphism T of (K) , there exists a unique point a E K

such that T (f) = f(a) , for every f E 

5.5 THEOREM. - Let E be a quasi-complete locally convex space with the approxima-

tion property, and let U be a polynomially convex open subset of E. Then for

each continuous complex homomorphism T of (~(U) ~ T ) ~ there exists a unique
point a E U such that T (f) = f(a) ~ for every f E ~(U) &#x26;.
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