Séminaire Paul Krée

JORGE MUJICA The Oka-Weil theorem in locally convex spaces with the approximation property

Séminaire Paul Krée, tome 4 (1977-1978), exp. nº 3, p. 1-7 <http://www.numdam.org/item?id=SPK_1977-1978_4_A4_0>

© Séminaire Paul Krée (Secrétariat mathématique, Paris), 1977-1978, tous droits réservés.

L'accès aux archives de la collection « Séminaire Paul Krée » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Séminaire Paul KRÉE (Equations aux dérivées partielles en dimension infinie) 4e année, 1977/78, nº 3, 7 p.

THE OKA-WEIL THEOREM IN LOCALLY CONVEX SPACES WITH THE APPROXIMATION PROPERTY

by Jorge MUJICA (*)

1. Introduction.

The classical Oka-Weil theorem asserts that every function which is holomorphic on a neighbourhood of a polynomially convex compact set K in C^n can be approximated uniformly on K by polynomials. In this paper, we show that the Oka-Weil theorem is still true in every quasi-complete locally convex space with the approximation property, thus improving earlier results of NOVERRAZ [5], LIGOCKA [1] and SCHOTTENLOHER [7]. The proof of the theorem is very simple, being no more than a straightforward consequence of a result of LIGOCKA [1]. As an application of the Oka-Weil theorem, we characterize the spectra of certain topological algebras of holomorphic functions.

2. Elementary properties of polynomially convex sets.

Throughout this paper, the letter E denotes a locally convex space, which is always assumed to be complex and Hausdorff. We let $\mathcal{P}(E)$ denote the space of all continuous polynomials on E, and we let $\mathcal{H}(U)$ denote the space of all hohomorphic functions on an open subset U of E. We refer to NACHBIN [4] or NOVERRAZ [6] for the basic properties of polynomials and holomorphic functions on infinite dimensional spaces.

2.1 Definition. - Given a compact set $K \subset E$, we define its polynomially convex hull \hat{K}_E by

 $\hat{K}_{E} = \{ x \in E ; |P(x)| \leq \sup_{K} |P| , \text{ for all } P \in \mathcal{P}(E) \}$.

We will often write \hat{K} instead of \hat{K}_E when the space E is tacitly understood. The compact set K is said to be polynomially convex if $\hat{K} = K$.

The following easily proved remark is often useful.

2.2 <u>Remark</u>. - Let M be a vector subspace of E, with the induced topology. Then $\hat{K}_{M} \subset \hat{K}_{E} \cap M$, for any compact set $K \subset M$, and equality holds, if M is a complemented subspace of E, i. e. if there exists a continuous projection of E onto M. 2.3 PROPOSITION ([6], lemma 2.1.2). - For each compact subset K of E, the polynomially convex hull \hat{K} of K is contained in the closed, convex hull of K.

(*) Texte reçu en Janvier 1979.

Jorge MUJICA, Instituto de Matematico, Universidade Estadual de Campinas, Caixa Postal 1170, 13100 CAMPINAS, S. P. (Brésil). <u>Proof.</u> - Let L denote the closed, convex hull of K, and let $a \notin L$. By the Hahn-Banach theorem, there exists a continuous linear form ϕ on E and a real number θ such that

Re
$$_{\mathfrak{O}}(\mathbf{x}) < \theta < \operatorname{Re}_{\mathfrak{O}}(\mathbf{a})$$
, for all $\mathbf{x} \in \mathbf{L}$.

Since the set $\varphi(L)$ is bounded, we can find a closed disc $D(\zeta; R)$ containing $\varphi(L)$ and not containing $\varphi(a)$. Then, $P(x) = \varphi(x) - \zeta$ defines a continuous polynomial on E and

$$\sup_{\mathbf{K}} |\mathbf{P}| \leq \sup_{\mathbf{L}} |\mathbf{P}| \leq \mathbf{R} < |\mathbf{P}(\mathbf{a})|$$
.

Hence $a \not\in \hat{R}$, and therefore $\hat{R} \subset L$.

2.4 COROLLARY. - For each compact set $K \subset E$, the set \hat{K} is always precompact, and is compact when E is quasi-complete.

2.5 Definition. - Let U be an open set in E.

(a) We say that U is <u>polynomially convex</u> if, for each compact set $K \subset U$, the set $\hat{K} \cap U$ is bounded away from ∂U , i.e. there exists a O-neighbourhood V such that $\hat{K} \cap U + V \subset U$ (in view of corollary 2.4, when E is quasi-complete, this is equivalent to saying that $\hat{K} \cap U$ is compact).

(b) We say that U is strongly polynomially convex if, for each compact set $K \subset U$, the set \hat{K} is contained in U.

2.6 <u>Remark</u>. - If E is quasicomplete, then clearly every strongly polynomially convex open set in E is polynomially convex. It is not known whether the converse holds in general. See corollary 3.3 below for a partial converse.

2.7 PROPOSITION.

(a) Every convex open set is strongly polynomially convex.

(b) Every open set of the form $U = \{x \in E ; |P(x)| < 1\}$, where $P \in \mathcal{P}(E)$, is strongly polynomially convex.

(c) The intersection of two (strongly) polynomially convex open sets is a (strongly) polynomially convex open set.

<u>Proof.</u> - (b) and (c) are trivial. In view of proposition 2.3, to show (a) it suffices to show that the closed convex hull of each compact set $K \subset U$ is also contained in U. Let V be a convex O-neighbourhood such that $K + V \subset U$. If L demotes the convex hull of K, then clearly $L + V \subset U$ too. Hence $\overline{L} \subset L + V \subset U$.

3. The Oka-Weil theorem.

The key of the proof of the Oka-Weil theorem is the following result of LIGOCKA ([1], proposition 2.1).

3.1 THEOREM. - Let E be a quasi-complete locally convex space, and let K be a polynomially convex compact subset of E. Then, every open neighbourhood of K contains another open neighbourhood of K which is strongly polynomially convex.

Proof. - Let us write, for each $P \in \mathcal{P}(E)$,

$$A_{p} = \{x \in E ; |P(x)| < 1\}, B_{p} = \{x \in E ; |P(x)| \leq 1\}$$

Let U be an open neighbourhood of K and let L denote the closed convex hull of K. Then, for each $x \in L \setminus U$, there exists $P \in P(E)$ such that

 $\sup_{K} |P| < 1 < |P(x)|$.

Hence by compactness of $L \setminus U$, we can find P_1 , ..., $P_n \in \mathcal{P}(E)$ such that

(1)
$$K \subset \Lambda_{P_1} \cap \cdots \cap \Lambda_{P_n}$$

and

$$L \setminus U \subset C B_{P_1} \cup \cdots \cup C B_{P_r}$$

and the last written inclusion implies

$$L \cap B_{p_1} \cap \cdots \cap B_{p_n} \subset U$$

We claim that

(3)
$$(L + W) \cap B_{P_1} \cap \cdots \cap B_{P_n} \subset U$$

for some convex open O-neighbourhood W. Let (W_{α}) be a base of convex open O-neighbourhoods and let us assume that, for each α , there exists a point

$$\mathbf{x}_{\alpha} \in (\mathbf{L} + \mathbf{W}_{\alpha}) \cap \mathbf{B}_{\mathbf{P}_{1}} \cap \cdots \cap \mathbf{B}_{\mathbf{P}_{n}} \cap \mathbf{C} \mathbf{U}$$

For each α , we choose $y_{\alpha} \in L$ such that $x_{\alpha} - y_{\alpha} \in W_{\alpha}$. Since L is compact, the net (y_{α}) has a subnet (y_{β}) which converges to a point $y \in L$. But, then the corresponding subnet (x_{β}) of (x_{α}) also converges to y, and then, by (2),

$$y \in L \cap B_{P_1} \cap \cdots \cap B_{P_n} \subset U$$

But, this is impossible, for $x_{\beta} \longrightarrow y$, and $x_{\beta} \notin U$, for every β . Thus (3) is proved. We then set

$$V = (L + W) \cap A_{P_1} \cap \cdots \cap A_{P_n}$$

It follows from (1) and (3) that $K \subset V \subset U$, and in view of proposition 2.7, V is strongly polynomially convex.

Now the proof of the Oka-Weil theorem is straightforward.

3.2 Oka-Weil THEOREM. - Let E be a quasi-complete locally convex space with the approximation property, and let K be a polynomially convex compact subset of E. Then, every function, which is holomorphic on an open neighbourhood of K, can be approximated uniformly on K by continuous polynomials on E.

<u>Proof.</u> - Let $f \in \Re(U)$, where U is an open neighbourhood of K. By theorem 3.1, we may assume that U is strongly polynomially convex. Let $\varepsilon > 0$ be given. Then, one can easily find an open O-neighbourhood V such that $K + V \subset U$ and

$$|f(y) - f(x)| < \varepsilon$$
, for $x \in K$, $y \in x + V$.

Since E has the approximation property, there exists a continuous linear operator T: $E \longrightarrow E$, of finite rank, and such that

$$T(x) - x \in V$$
, for every $x \in K$.

Then, it follows that

$$|f \circ T(x) - f(x)| < \epsilon$$
, for every $x \in K$,

and also that $T(K) \subset K + V \subset U$. Since U is strongly polynomially convex, we get that $T(K)_{E} \subset U$ and hence

$$\overline{T(K)}_{T(E)} = \overline{T(K)}_{E} \cap T(E) \subset U \cap T(E)$$
.

Set $L = T(K)_{T(E)}$. Then L is a polynomially convex compact subset of T(E)and the restriction of f to $U \cap T(E)$ is holomorphic on a neighbourhood of L in T(E). Then, by the classical Oka-Weil theorem, there exists $P \in P(T(E))$ such that

$$\sup_{I_{i}} |f - P| \leq \epsilon$$
.

Then $P \circ T \in \mathcal{P}(E)$ and

$$\sup_{K} |f - P \circ T| \leq \sup_{K} |f - f \circ T| + \sup_{K} |f \circ T - P \circ T| \leq 2\varepsilon$$

concluding the proof.

3.3 COROLLARY. - Let E be a quasi-complete locally convex space with the approximation property. Then, every polynomially convex open set in E is strongly polynomially convex.

<u>Proof.</u> - The proof is classical. Let U be a polynomially convex open set in E, and let K be a compact subset of U. Then, the compact set \hat{K} may be written as the union of the disjoint compact sets $\hat{K} \cap U$ and $\hat{K} \setminus U$. We define a function f to be equal to zero on a neighbourhood of $\hat{K} \cap U$ and equal to one on a neighbourhood of $\hat{K} \setminus U$. Then, f is holomorphic on a neighbourhood of \hat{K} , and, by theorem 3.2, there exists $P \in \mathcal{P}(E)$ such that

$$\sup_{\hat{K}} |f - P| < \frac{1}{2}$$
.

Then, for any point $a \in \hat{K} \setminus U$,

$$\sup_{K} |P| < \frac{1}{2} < |P(a)|$$
,

a contradiction, unless $\hat{K} \setminus U$ is empty.

4. Elementary properties of topological algebras.

By an algebra, we always mean a commutative algebra over the complex numbers, and having an identity element. By a complex homomorphism of an algebra A, we mean an algebra homomorphism T: $A \longrightarrow C$ with T(1) = 1.

4.1 <u>Definition</u>. - A <u>topological algebra</u> is an algebra and a topological vector space such that ring multiplication is separately continuous. A <u>locally convex algebra</u> is a topological algebra which is a locally convex space. A <u>locally multiplicative</u>. <u>ly convex algebra</u> is a topological algebra which has a base of convex and idempotent neighbourhoods of zero (V is idempotent if $V^2 \subset V$). A <u>Q-algebra</u> is a topological algebra where the invertible elements form an open set. The <u>spectrum</u> of a topological algebra A is the set of all continuous complex homomorphisms of A.

4.2 PROPOSITION. - Let (Λ_{α}) be a family of subalgebras of an algebra Λ , directed under inclusion, and satisfying $\Lambda = \bigcup \Lambda_{\alpha}$. Let us assume that each Λ_{α} is a locally convex algebra and that each inclusion mapping $\Lambda_{\alpha} \hookrightarrow \Lambda_{\beta}$ is continuous. Let Λ be endowed with the locally convex inductive topology with respect to the inclusion mappings $\Lambda_{\alpha} \hookrightarrow \Lambda$. Then :

(a) A is a locally convex algebra.

(b) If each Λ_{α} is a Banach algebra and if each inclusion mapping $\Lambda_{\alpha} \hookrightarrow \Lambda_{\beta}$ has norm not greater than one, then Λ is a Q-algebra.

Proof.

(a) It suffices to show that ring multiplication in A is separately continuous. Given $y \in A$, we choose α_0 such that $y \in A_{\alpha_0}$. Then the mapping

$$x \in A_{\alpha} \longrightarrow xy \in A_{\alpha}$$

is continuous, for every $\alpha \ge \alpha_0$, and it follows that the mapping $x \in A \longrightarrow xy \in A$ is also continuous.

(b) For each α , let \mathbb{V}_{α} denote the open unit ball of \mathbb{A}_{α} . Since \mathbb{A}_{α} is a Banach algebra, 1 + h is invertible in \mathbb{A}_{α} , for every $h \in \mathbb{V}_{\alpha}$. Let $\mathbb{V} = \bigcup \mathbb{V}_{\alpha}$. Then \mathbb{V} is a convex O-neighbourhood in \mathbb{A} , and 1 + h is invertible in \mathbb{A} , for every $h \in \mathbb{V}$. Let $x \in \mathbb{A}$ be invertible. Choose a O-neighbourhood \mathbb{U} in \mathbb{A} such that $x^{-1} h \in \mathbb{V}$, for every $h \in \mathbb{U}$. Then, $x + h = x(1 + x^{-1} h)$ is invertible in \mathbb{A} , for every $h \in \mathbb{U}$.

4.3 PROPOSITION. - Let (Λ_{α}) be a familly of locally convex algebras and, for each α , let π_{α} : $\Lambda \longrightarrow \Lambda_{\alpha}$ be an algebra homomorphism of an algebra Λ into Λ_{α} . If Λ is endowed with the projective topology with respect to the mappings π_{α} , then Λ is also a locally convex algebra.

<u>Proof.</u> - It suffices to show that ring multiplication in A is separately continuous. If $y \in A$, then, for each α , the mapping $\pi_{\alpha}(x) \in A_{\alpha} \longrightarrow \pi_{\alpha}(x) \pi_{\alpha}(y) \in A_{\alpha}$

is continuous, and it follows that the mapping $x \in E \longrightarrow xy \in A$ is also continuous.

5. Topological algebras of holomorphic functions.

For any open set $V \subset E$, we let $\Re^{\infty}(V)$ denote the Banach space of all bounded holomorphic functions on V with the norm of the supremum. For any compact set $K \subset E$, we define $\Re(K)$, the space of all holomorphic germs on K, as the locally convex inductive limit of the Banach spaces $\Re^{\infty}(V)$, where V varies among the open neighbourhoods of K. Then, from proposition 4.2, we get at once the following proposition.

5.1 PROPOSITION. - H(K) is always a locally convex algebra and a Q-algebra.

Let U be any open set in E. A semi-norm p on $\mathcal{H}(U)$ is ported by a compact set $K \subset U$ if, for each open set V, with $K \subset V \subset U$, there exists a positive constant C such that $p(f) \leq C \sup_{K} |f|$, for every $f \in \mathcal{H}(U)$. The topology τ_{ω} , introduced by NACHBIN [4], is the locally convex topology on $\mathcal{H}(U)$ generated by all semi-norms which are ported by compact sets.

5.2 THEOREM. - $(\mathcal{H}(U), T_{(i)})$ is always a locally convex algebra.

<u>Proof.</u> - [2] (lemma 5.3) tells us that T_{ω} is the projective topology with respect a certain family of algebra homomorphisms $\pi_{K} : \mathcal{H}(U) \longrightarrow \mathcal{H}^{K}(U)$, where each $\mathcal{H}^{K}(U)$ is an inductive limit of normed algebras. The conclusion then follows from propositions 4.2 and 4.3.

5.3 <u>Remark</u>. - If E is metrizable, then both $\Re(K)$ and $(\Re(U), \tau_{\omega})$ are locally multiplicatively convex algebras : see [2], theorems 7.1 and 7.2. We do not know whether this remains true for non-metrizable E.

In [3], we characterized the spectra of $\Re(K)$ and $(\Re(U), T_{\omega})$ in the case where K and U are polynomially convex and E is a Fréchet space with the approximation property. To obtain those results, we used a version of the Oka-Weil theorem in Fréchet spaces with the approximation property due to SCHOTTENLOHER [7]. If one uses theorem 3.2 instead, then the same proof works in every quasi-complete local-ly convex space with the approximation property. Thus, we get the following theorem.

5.4 THEOREM. - Let E be a quasi-complete locally convex space with the approximation property, and let K be a polynomially convex compact subset of E. Then, for each complex homomorphism T of $\Re(K)$, there exists a unique point $a \in K$ such that T(f) = f(a), for every $f \in \Re(K)$.

5.5 THEOREM. - Let E be a quasi-complete locally convex space with the approximation property, and let U be a polynomially convex open subset of E. Then, for each continuous complex homomorphism T of $(\Re(U), \tau_{U})$, there exists a unique point $a \in U$ such that T(f) = f(a), for every $f \in \Re(U)$.

REFERENCES

- [1] LIGOCKA (E.). A local factorization of analytic functions and its applications, Studia math., t. 47, 1973, p. 239-252.
- [2] MUJICA (J.). Spaces of germs of holomorphic functions, Advances in Math. (to appear).
- [3] MUJICA (J.). Ideals of holomorphic functions on Fréchet spaces, "Advances in holomorphy". - Amsterdam, North-Holland publishing Company (Notas de Matematica) (to appear).
- [4] NACHBIN (L.). Topology on spaces of holomorphic mappings. New York, Springer-Verlag, 1969 (Ergebnisse der Mathematik, 47).
- [5] NOVERRAZ (P.). Sur la pseudo-convexité et la convexité polynomiale en dimension infinie, Ann. Inst. Fourier, Grenoble, t. 23, 1973, p. 113-134.
- [6] NOVERRAZ (P.). Pseudo-convexité, convexité polynomiale et domaines d'holomorphie en dimension infinie. - Amsterdam, North-Holland publishing Company; New York, American Elsevier publishing Company, 1973 (North-Holland Mathematics Studies, 3; Notas de Matematica, 48).
- [7] SCHOTTENLOHER (M.). Polynomial approximation on compact sets, "Infinite dimensional holomorphy and applications [Sao Paulo, 1975]", p. 379-391. -Amsterdam, North-Holland publishing Company, 1977 (North-Holland Mathematics Studies, 12; Notas de Matematica, 54).