
SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

JOHN B. WALSH
Some topologies connected with Lebesgue measure
Séminaire de probabilités (Strasbourg), tome 5 (1971), p. 290-310
<http://www.numdam.org/item?id=SPS_1971__5__290_0>

© Springer-Verlag, Berlin Heidelberg New York, 1971, tous droits réservés.

L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail.
mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou im-
pression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SPS_1971__5__290_0
http://portail.mathdoc.fr/SemProba/
http://portail.mathdoc.fr/SemProba/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


SOME TOPOLOGIES CONNECTED WITH LEBESGUE MEASURE

J. B. Walsh

One of the nettles flourishing in the nether regions of the

field of continuous parameter processes is the quantity lim sup X .
s-~ t 

When one most wants to use it, he can’t show it is measurable. A theorem

of Doob asserts that one can always modify the process slightly so

that it becomes separable, in which case lim sup X is the same
s-t 

~

as its less prickly relative lim sup X , where D is a countable

set. If, as sometimes happens, one is not free to change the process,

the usual procedure is to use the countable limit anyway and hope

that the process is continuous. Chung and Walsh [3] used the idea of

an essential limit-that is a limit ignoring sets of Lebesgue measure

and found that it enjoyed the pleasant measurability and

separability properties of the countable limit in addition to being

translation invariant. Doob has recently generalized and improved

this, showing that there is a large class of topologies on the line

enjoying similar properties, called T-topologies.(T for Lebesgue, of course:)
The first three sections of the present article are an

exposition of Doob’s work, including some remarks on progressive

measurability,which wasn’t treated in the original. The last sections

give some applications, first to potential theory and then to

Markov chains.

The two main properties of these topologies which are established

here are first, that one can define separability relative to such a

topology in a very natural way, and then every measurable process turns

out to be separable, without benefit of standard modifications, and

secondly, if X is a measurable process, then so is Y, where Yt = lim sup Xs’
’ s--~ t

and in fact y usually has better measurability properties than X.
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Let T be a topology on the line R. If A C R, then AT
will denote the set of T-accumulation points of A. Lebesgue measure

and Lebesgue outer measure will be denoted by m and m* respectively.

We will be concerned with topologies T on R satisfying

(a) T is finer than the Euclidean topology;

(b) a set of Lebesgue measure zero has no accumulation points;

(c) for each A C R, m(A - AT) = 0 . .
Such a topology will be called a T-topology. If not otherwise stated,

topological notions will refer to the usual topology on the extended line.

A for instance will mean the ordinary closure of A. For a real valued

funct ion f on R we will def ine the T-cluster set of f at a point t to

be , where N ranges over all deleted neighborhoods of t;
we will denote this set by CT(f;t) . . We define also

fT(t) = f(s) = max and

fT(t) = f(8) = min 

Then we have fT a.e. (m); for fT everywhere by,

definition, and for each b ~ 0 , , the set {t: f ( t ) >~ fT( t )+b} can have
no accumulation points, and hence is of zero Lebesgue measure by (c).
Thus fT a.e. and similarly a.e.

There are many T-topologies. One of the most useful is the

essential topology L. An L-neighborhood of t is just an ordinary

neighborhood minus a set of Lebesgue measure zero. A point t is an

accumulation point for a set A in this topology iff 0 for

each neighborhood N of t. One can easily verify that

(i) A is L-open iff A = 0 - Q , , where 0 is open and m(Q) = 0 ; ;
(ii) L is the coarsest T-topology; 

’

(iii) the L-Borel field is exactly the Lebesgue measurable sets.

Here, (iii) is a direct consequence of (i). The essential topology
has some interesting connections with the ordinary topology:

(iv) if A C R then AL is closed and perfect in the ordinary
topology.



292

To see this, let t be in the closure of AL. If N is a neighborhood of

t there exists N is also an L-neighborhood of s so

. Thus tE AL. Further, by (c), so in

particular N contains points of A other than t.
It can be shown that this property characterizes L among

T-topologies. A direct consequence of (iv) is that for a function f

(v) f is upper semicontinuous in the ordinary topology;

(vi) f is continuous iff f is L-continuous.

Here, (v) follows by writing {fL  a} as the complement of
~ , which is closed by (iv). If f is continuous, it is

clearly L-continuous, and if f is L-continuous, then f = fL = f , ,
so f is both.lower and upper semicontinuous, hence continuous.

Two other examples of T-topologies are afforded by the right

and left L-topologies,respectively denoted Lr and Neighborhoods
of t are of the form N~1 and respectively, where N

is an L-neighborhood of t. Results quite similar to the above hold

for these topologies. Quite a different example is given by the

topology Td: a point t is a Td-limit point of a set A if
lim 1/2b 0. It is easily verified that Td is in
fact a T-topology. T. is called the approximate topology, and it

is classical that a Lebesgue measurable function is approximately

continuous almost everywhere.

2. . MEASURABLE PROCESSES

Let (Q,F,P) be a probability space. Let B denote the Borel sets

and consider the product space RXQ. We will denote the completion

of BXF with respect to mXP by’ BXF . A function X on R 03A9 to

R is Borel measurable if it is BXF measurable, and is Lebesgue
measurable if it is BXF measurable. An additional property shared

by some but not all of the T-topologies is
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(d) If (t,w) is Borel measurable, then so

is (t,w) -~X~(t,u)) . .
Here as usual = T-lim sup X(s,w). . Note that (d) is not

s2014~t
satisfied by the ordinary topology ! We say that two functions X and

Y on RXQ are indistinguishable if for a.e. . (P) w, X(t,w) = Y(t,w), all t. .

PROPOSITION 2.1 Let T be a T-topology which also satisfies (d) and
let X be a Lebesgue measurable process. Then X T is indistinguishable
from a Borel measurable process.

PROOF. There exists a Borel measurable Y such that Y = X mXP a.e.

By Fubini’s theorem, for a.e. w m{t: X(t,o)) ~ Y(t,cu)}= 0 .
By (b), then, for all such = for all t. By (d)
Y T is Borel measurable, qed

PROPOSITION 2.2 The topologies Land T along with their right and
left hand topologies satisfy (d).

PROOF. Suppose first that X is the indicator function of some set

in BXF . Notice that in that case

XL(t,03C9) = lim
and = lim flim sup 

f-a -~
These are both B F measurable by Fubini’s theorem. For general

BXF measurable X, notice that for any real number band T = L or T = T : :

I{XLb} = lim (I{Xb-1/n}) , which is BXF measurable, qed.

The proof for the respective right and left hand topologies is
entirely similar and is left to the reader. qed

What one often needs in applications is progressive measurability
rather than just measurability. Let (Ft)t~R be an increasing
set of Borel sub fields of F and let 

f 

t) be the i ass 0 f Bo reI
sets of (-~,a). Then a function X on R 03A9 is said to be progressive

measurable if for each a~R the restriction X~ of X to 
(here it is important to take the open interval) is measurable
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and is progressively Lebesgue measurable if Xa is B XF measurable,
the completion being again with respect to m X P . . (We are ignoring
for the moment the question of whether or not X is adapted to 

i.e. whether or not X(t,.) is F. measurable for each fixed t.

LEMMA 2.3 If X is progressively Lebesgue measurable there exists a

progressively Borel measurable process X such that X = X mXP-a.e.

PROOF For each integer n ~1 and each integer k there exists a

function Y on 03A9 which is Bk/2n Fk/2n measurable
and is equal mXP-a.e. to X ~ . Define Y 

n 
on RXQ by

Yn = Y on Ck-1 ~2n, k~2n ~ X ~ , , and finally def ine X = lim inf Y .~ ~’~ ~

Now X plainly equals X mXP-a.e. To see that X is progressively
Borel measurable, note that if a = k~2n , , then for each m ~ n and

j f: k, , Y. is B XF measurable. Thus the same is true of

1m and hence of X. For a general a, just apply this remark

to a sequence of dyadic rationals which increase to a. qed

THEOREM 2.4 Let T be a T-topology which satisfies (d). If X

is progressively Borel measurable, so is XT ; ; if X is progressively

Lebesgue measurable, XT is indistinguishable from a progressively
Borel measurable process. In the first case XT is adapted to (F )
and in the second it is indistinguishable from an adapted process.

PROOF If for all a, Xa is B X F measurable, then by (d), so

is (Xa)T. But (Xa)T = (XT)a, for Xa is the restriction of X to the
open interval so XT is also progressively Borel measurable.
If X is only progressively Lebesgue measurable, it is equal mXP-a.e.

to a progressively Borel measurable X. We have just shown that XT A
is progressively Borel measurable, and the argument in the proof of

Proposition 2.1 shows XT and XT are indistinguishable.
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The statements on adaptability of XT are consequences of the
general fact that any process progressively Borel measurable with

respect to (Ft) is adapted to (Ft+). Indeed, for any b > a,

X(a,.) = Xb(a,.), while Xb(a,.) is Eb measurable by Fubini’s theorem." 

qed

The reason for insisting on the transition from progressively

Lebesgue to progressively Borel is that the important stopping theorems-

measurability of X(S) for a stopping time S , for instance--valid for

progressively Borel processes are false for progressively Lebesgue
processes.

3. SEPARABILITY

Suppose now that {Xt’ is a stochastic process.

If D CR , , XL will denote t E D ~ . . According to a classical
theorem of Doob, there exists a countable set D and a standard

modification X of X such that for a.e. w, X is in the cluster set
of ~ at t for all t £ R. If X is progressively Lebesgue or Borel

measurable, one can choose X to be progressively Lebesgue or Borel
measurable respectively. Recalling our notation for cluster sets,
separability for X implies

(3.1) = and C0r (X;t) = ’

where 0 and Or are the Euclidean and Euclidean right hand topologies
respectively. We will take (3.1) as a model for a definition of
T-separability. Let T be a T-topology.

DEFINITION A real valued stochastic process {Xt’ is

T-separable (right T-separable) if there exists a countable set
DCR, called a T-separability set (right T-separability set ) and KCQ

with P(K) - 0 such that if (M ~ K then

(3.2) CT(X;t) (resp. CTr(X;t) ~ C0r(X|D;t) ) for all t.
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X is strongly T-separable (strongly right T-separable) and D is a

strong (right) T-separability set if there is equality in (3.2).

REMARKS 1. If X and X are Lebesgue measurable standard modifications

of each other, then wp1 they have exactly the same T-cluster sets for

any T-topology T. This follows since by Fubini’s theorem, w.p.1

m(t: X./ X ) = 0 , hence by (b) the set X ~ X~ has no T-accumulation
points.

2. A super-set of a separability set is a separability set

but a super-set of a strong separability set may not be a strong

separability set. .

THEOREM 3.1 Let T be a T-topology and let X be a Lebesgue measurable

process. Then X is T-separable and right T-separable. X is also strongly

L-separable and strongly right L-separable.

PROOF We will prove separability only; the same proof works for

right separability. Fix for the moment a set N C. R with meN) = 0 .
Let X be a Lebesgue measurable standard modification of X
and let D be its separability set. Then w.p.1 we have for all t:

= = 
’

where the first equality follows from remark 1, the second by separability

and the last because, as D is countable, XL and |D are indistinguishable.
Thus X is T-separable.

Now we specialize to the essential topology. So far the set

N has played no role, but now we choose it as follows. Let g be

continuous on the compact interval For each w,

m-a.e. Since L satisfies (d), both sides
are Lebesgue measurable so by Fubini’s theorem there is an m-null set

Ng~R such that if t ~ Ng then w.p.1. Choose

~g ~ dense in and let N . With this N, let D be

the separability set above. As DnN by definition, for each s ~ D

g(X )  (g(X ))~ . . This is true w.p.1 simultaneously for all s in D
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so, noting that is upper semicontinuous by (v),

lim sup 

The opposite inequality follows since D is an L separability set.

Thus there is equality simultaneously for all t E R and g E C~-~,o~~ . .
But this implies strong separability since if a is a limit point of

XDD at t, choose to have 
a 

strict maximum 1 at a. Then

1 = lim sup g(Xs) = 
s-~ t

s£D

so a is in the L.cluster set of X at t. qed

We had no scruples about using the strongest form of Doob’s

separability theorem above, even though it is decidedly deeper than
the theorem in question. For a demonstration more or less by hand
of a similar theorem the reader may glance at §5 of 

We should warn the reader that we have given a slightly stronger
definition of T-separability than Doob. With his definition, all

Lebesgue measurable processes are strongly separable relative to

any T satisfying (d). With our definition, we have the curious fact
that this is true only for T = L. . Indeed, if T is different from L

there will be some Borel set AC R for which AL. As L is

coarser than T, there exists t o in A~- A . Let f be the indicator

function of A. Note that fT(to) = 0 while fL(to) = 1 . But

f = f m-a.e. by (c), so to is an accumulation point of {f = 1~ . .
By T-separability, it is also an accumulation point of Jf = ,

where D is any T-separability set. Thus the T-cluster set of f at

to is while the cluster set of ,at to also contains 1 . It follows

that if Q is a probability space, the stochastic process = f(t)
is T-separable but not strongly so.



298

4. APPLICATIONS TO POTENTIAL THEORY

One of the virtues of the limits we have been discussing is

that they often exist where ordinary limits do not. For instance,

nothing can be said about the existence of ordinary limits for a

Lebesgue measurable submartingale t O J unless it is

separable. On the other hand it has right and left L-limits (and
therefore limits in any right or left T-topology) at all w.p.1.

This is a simple consequence of L-separability and the existence

of one-sided limits along any countable parameter set.

Another use of these limits is to sidestep thorny measurability

problems. Let be a probability space and 

increasing family of Borel subfields of ~.. be a

progressively Borel measurable stochastic process taking values in a

locally compact metric space E . Define a complete measure 03BD on E by

by ~ (A) = E~ dt ~ for Borel sets A.

~ 
progressively

Then, if f is 03BD-measurable, the process is/Lebesgue measurable:
for there exist Borel measurable functions f’ and fit on E for which

f"j = 0 and f’&#x26;f&#x26;f"; then the set {(s,u): 
is both =t B XF =t measurable and of m)( P-measure null. It follows by (d)

That and are indistinguishable from progressively
Borel measurable processes.

Now let us specialize this situation. Suppose, in the notation

of [1], that X = is a Hunt process, except that

we will not assume quasi left continuity of the paths. Measurability
notions become more complex in this setting because of the presence of
more than one measure on the probability space; in fact, for each

probability measure~ on E there is a probability measure pM. on (Q,F).
Recall that is the Borel field generated s  t! and F0 =F0t.
Then F and Ft are gotten by completing F0 and F0t respectively according
to the prescription in [ lj. Notions of measurability in the following
will be with respect to the fields F and Ft unless specifically stated
otherwise.
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We will say that a process Z is ( ro essivel Lebesgue measurable
if for each probability measurer on E, Z is (progressively)
Lebesgue measurable on the space The idea of progressive
Borel measurability is independent of measure, but it is convenient

to introduce another notion: a process Z is nearly (progressively)
Borel measurable if for each probability measure on E there exists

a (progressively) Borel measurable process Z such that Z and Z’~ are

indistinguishable when the probability space is given the measure P~:,
With these notions it is clear that the analogue of Theorem 2.4 is 1

THEOREM 2.4’ Let T be a T-topology which sat isf ies (d). If Z

is progressively Lebesgue measurable and real valued, then
ZT is nearly progressively Borel measurable and adapted.

This theorem follows upon applying the remark of the previous

paragraph separately for each P ~‘ The pleasant properties of progres-
sive Borel measurability carry over to nearly progressively Borel

measurability.

THEOREM 4.1 Suppose Z = fZt,t >,0 ~ is a nearly progressively Borel
measurable process taking values in some separable metric space G, and
S is a stopping time (always with respect to (Ft~.~ Then ZS is
FS-measurable. Furthermore, if A is an analytic set in G and

SA = inf ~t > 0: Zt E A~ , then SA is a stopping time.

PROOF Fix  and let Z  be a progressively Borel measurable
process which is P -indistinguishable from Z. If H c F , H  will
designate the Borel field generated by g plus all the P~-null sets of
F . . By T49 of [ 5], Z~‘ is Fg measurable and equal to Z P~-a.e.
Thus Zs is measurable with respect to F S = F. 

q 

On the other 
.e.

hand, according to Theorem T52 the random variable

is a stopping time, equal to S A p"-a.e.
Thus the set BS.? in hence in F ed
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Hunt’s potential theory for strong Markov processes is

based on the first hitting time of a set, but one can also base

a potential theory on the idea of a first penetration time, as has

been done for instance by Stroock L61. The first penetration time rrA
of a set ACE is the infimum of times t for which A~ > 0,
or, in our notation

(4.1) .

If A C E is universally measurable, or just R1-measurable for

each probability measure  on E, where R1(B) = J,
then will be nearly progressively Borel measurable and rtA
will be a stopping time. Notice that penetration times are measurable

for a much larger class of sets than are first hitting times, and

their measurability is a rather trivial fact. Nevertheless, we will

see shortly that penetration times are in reality a subclass of hitting
times.

It is natural to define a topology F, which we shall call

the essentially fine topology, which is connected with penetration times.

A set A is open in this topology if for each x E A there exists a

universally measurable subset B CA such that and 01= 0 .

The set of F-cluster points of A is denoted by AF. A closely

related notion is that of essential regularity. A point x is essentially

regular for A if for each universally measurable B C A, OJ= 0.
In fact, the set A of essentially regular points coincides with
AF if the resolvent charges no point, and in general we have

It is easy to see that AF =1 IBF and n B r where the

intersections are taken over all universally measurable sets B which

contain A. The closure of a set A in the essentially fine topology

is given by AuA =AUA.
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PROPOSITION 4.2 If A C E is Borel, so are AF and Ar. If A is

universally measurable, both A and Ar are nearly Borel measurable.

PROOF Let g(t,w) = If A is Borel, this is 

measurable, hence so is Then = 1 E FO so
1} is Borel measurable. But A is exactly the set

where this probability is one. If A is universally measurable and

~ is a probability measure on E, there exist Borel B and C such

that BCACC and ( C-B) = 0. Then BrC ArC Cr and Br and Cr
are Borel measurable. X spends almost no time in C-B w.p.1 (P’~); 

’

we claim Cr- Br is polar for the process with initial distribution ~t.
If not there is a stopping time S for which 0[5p. 1 ~,2 ~.
But a.s. on {XS ~ Cr- BrJ we have 0 = implying the

process spends strictly positive time in C - B, a contradiction.

The proof for A is similar except one uses the function
h(x,t,w) = instead of g. qed.

THEOREM 4.3 Let A be universally measurable. Then n = 03C0Ar = SAr
w.p.1, and Ar a.s. on (where SB is the first hitting time of B.)

PROOF If S is a stopping time, w.p.1: iff = 1;

for I A (XS) = 1 = 0 which is-by the strong Markov property -

equivalent to == 0} = 1 . IA(Xt) is right upper semicontinuous
in t, so = 1, implying a.e. on Applying the

above remark to fixed times S and using Fubini’s theorem, we can

show that the sets and {(s,w): = 1 ~
differ by a set of m x P measure zero. Thus w.p.1 , as

both equal inf ~s: = 1 ~ . * Now consider SAr. By the

section theorem 162~, for 6>0 we can find a stopping time S

between SAr and SAr + E such that 0

a.e. on {XS ~ Ar} by the strong Markov property. Thus SAr w. p. 1 .

This completes the proof since SAr is always less than or equal to 03C0Ar.
qed 

.
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COROLLARY Let A 6 E. . Then AF and Ar are closed in both the
fine and essentially fine topologies.

Proof It is enough to show fine closure since the fine topology
is coarser than the essentially fine topology. We need only consider

universally measurable sets. Suppose x is regular for the nearly
Borel set AF. If x we are done, so suppose it is not. Then

there exists a stopping time S  6- , , such that e A ~ ~ > 1 - 6.

But X S e A _ ~=_~ as = 0 ~ = 1 ; no as we have

= 1 , or x E A . But XS 6 A =~ XS ~ x, so by right

continuity of the paths S xo 8 S > 0; so in fact x E AF, ’ the desired

contradiction. The proof for A r is similar. qed

This result gives some insight into why the penetration times

can be defined on a larger class of sets than hitting times:

penetration times reduce to hitting times of nearly Borel finely closed

sets. We should note in passing that much of the above can be

obtained from the general theory of additive functionals, for Ar
is exactly the fine support of the continuous additive functional

.

It is amusing, if not particularly significant, that the

essentially fine topology satisfies

a’) it is finer than the fine topology;

b’) a set of potential zero has no accumulation points;

c’) if A is universally measurable, A - A has potential zero.

Before leaving the subject we will give one more useful

corollary.

THEOREM 4.4 Let f be a real valued universally measurable function

which is continuous in the essentially fine topology. Then

i) f is nearly Borel measurable;
ii) f is fine continuous;

iii) s -+ f(X ) is almost surely right continuous.
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PROOF Write {x: f (x) >, a1 f(x)  a - n-1}r. Each set

in the intersection is nearly Borel and finely closed by the

corollary. This proves i) and ii). The last part is now a well-known

consequence, but we will give a short proof to illustrate the methods

of this paper.

We may assume f is bounded. Set Z 
s 

= f(X .

Then Z is upper semicontinuous from the right and, according to

Theorem 2.4’, it is nearly progressively measurable. Thus T = infra: 
is a stopping time and ZT >. F . . The strong Markov property and

essential fine continuity of f imply = = ~(X,p) ; ;
so is right continuous. It is therefore well measurable, as
is X and hence f(X s ). If / f(X s )~ some s~ > 0 , , by T21 of [, 5]
there is a stopping time S such that P ~ f(X ) ~ 0 , , which

again contradicts the essential fine continuity of f, hence f(X) is

identical to the right continuous process 

Once it is known that ess.ential fine continuity (at all points!)
implies fine continuity the above theorem can be derived trivially

from known results. However, its novelty is precisely that only

essentially fine continuity is needed. Observe, for instance, how

quickly one can derive Hunt’s result that an excessive function is nearly

Borel and right continuous along the sample paths. We need only

check that an excessive function f is essentially finely continuous.

Fix x e E. . Then ~f ( Xs )? s >. 0 ~ is a Lebesgue measurable super-

martingale with values in [0,Co[ and thus has an essential limit f..
at s = 0 ; ; t’his limit is constant with Px probability one by the
Blumenthal zero-one law. But then, if s > 0

f(x) = Psf(Xs) .
Now let s--~ 0; then P f(x) -+ f(x), implying fo = f(x). Note that

the above equation is valid even if some or all of the terms are infinite.
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5. APPLICATIONS TO MARKOV CHAINS

Most of the interesting aspects--and pathologies--of the

sample function behavior of continuous parameter Markov processes

are already present in the relatively simple case of Markov chains.

The sample functions can be everywhere discontinuous,for instance.

One of the bothersome features of these processes is that in general
there is no separable version of the process with values in the

original space. One can compactify the space in some convenient manner

and then find a separable version in the enlarged space, but then the

process will spend some time (of Lebesgue measure zero) outside the

original state space. This suggests the suitability of the topologies

we have been discussing, for they have a tolerant astigmatism which

allows them to overlook sets of measure zero. We will briefly discuss

some of the sample function properties of a standard Markov chain

from this viewpoint. Only the viewpoint has any claim to novelty;

the theorems can all be found in sections II.4 - II.9 of 

Let I = ~ O,i,2,... ~ and ,

be a standard transition matrix, that is, a transition matrix satisfying

p..(t) ~ 03B4ij , as t -> 0 . . It is known that

(5.1) pij(t) is continuous in t for t > 0, and q. - lim 
exists.

The state i is said to be stable if , and unstab if qi = o~.

Let ~Xt, , t >. 0 ~ be a Markov chain having transition matrix P.

The continuity of the p..(t) imply that X is stochastically con-

tinuous and thus L 5] can be assumed to be Borel measurable.

PROPOSITION .1 Any countable dense set is a strong L, Lr, and L1
separability set. .

PROOF If S and S’ are countable dense sets, and if s 6 S U S’,

stochastic continuity implies that X is a.s. in the cluster sets of
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both X IS and at s. Thus the cluster sets of and of 

are equal at all t w.p.1. If S is a strong separability set (and one
exists by Theorem 3.1) then so is S~ The same remarks apply to the
left and right cluster sets. qed

NOTE For f bounded on I we write 03A3pij(t)f(j) and
R P f(i) Then for f>,O ,{Rpf(Xt), t  0} is a

supermartingale and therefore has Lr and L1 limits at each point w.p.1.
This immediately implies the following basic property of the paths.

PROPOSITION 5.2 If w is not is some set N with P(N) = 0, then t-+Xt(w)
has at most one finite Lr and Ll cluster point at each t.

PROOF Let f = I. and note that, as the transition matrix is standard,
pRpf as p --~oo . Given i ~ j, then, we can find p large enough so

that R f(i)  R p f(j) . Let Q - N be the set on which R p f(X) has
Lr and L1 limits, and just notice that existence of an Lr limit

(Ll limit) at t implies that not both i and j can be in the Lr 
clster set of X at t . qed

For i E I, define S . i (w ) _ ~ t : Xt (w) = i ~ . This set dependson the particular version of X chosen, but the sets and

SL1 are invariant under standard modification, up to a set of zero
probability. Proposition 5.2 doesn’t exclude the possibility of

having 4D as a cluster point at some, or even all t, but it does

tell us that the sets S. 1 and S. J aren’t too badly mixed up. If i

and j are distinct, then and are empty and

S. L "S L is discrete. 
1 J 1 J

PROPOSITION 5.3 W.p.1, Si, SLi, and SLri are identical up to sets

of Lebesgue measure zero.

PROOF For any set A, = 0 and m(A - AL) = 0 . It remains

to show m(SLri - S.) = 0. But, neglecting Lebesgue null sets:
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SLri - Si = SLri[ Sj ] ~[ SLrj]
which is empty by the remarks preceeding this proposition. qed

Notice that this proposition does not quite imply Theorem 3

p. lsl of [2$ which states in our notation that P (t m I .

However, remark that m(S~ - Sll/d) m 0 -property (c)--so that by
Fubini’s theorem this probability must be one for a.e. (m) t, and

hence, as it is independent of t, for every t. As in §4, fl~ denotes
the first penetration time of A, and we write 03C0i instead of 

PROPOSITION Q/ For 0 £ qi m, and s, t z 0

( 5.2) P ( s 6 Shr ) X = I ) = I

( 5.3) [ Xs = I) = e-qit .

PROOF (5.2) is a consequence of the remarks preceeding the

proposi tion and th.e fact that L r is coarser than Tdr. . Suppose qi m.

( 5.4) P m I , k = °, .:., 2~ ) I x~ = I) = 
> [l - + o(2 ~)]~~= 1 - 2 i + 0(2 )

which converges to as This implies

(5.5) = I for all dyadic r~[0,1]|Xs = = I) = .

As any countable dense set is a strong L~ separability set this gives
(5.3). Note that strong separability is needed for this implication.

If q~ is infinite, (5.4) remains valid since for any N b I and large

enough n the right hand side of (5.4) is dominated and hence

must be zero. qed
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Sooner or later one usually wishes to make the process

separable; this can be done in any compact separable Hausdorff

space E containing I. The main advantage gained is commonly the

availability of some form of the strong Markov property; with the

right choice of E, one can actually find a strongly Markov standard

modification of Xt. But even the simplest choice of E gives a

useful form of it. Consider the process on the Alexandroff com-

pactification {~} of I:

or in other language

= ess lim inf X (ou) , , taken in the extended reals.

s~t 
s

By strong L r separability (the full force of strong separability is
needed) this is indistinguishable from the lim inf Xjw) over

s~t 
"

rational s,.which is the version given by Chung. This process is

Borel measurable, even lower semi continuous, and is a standard

modification of X by (5.2) and Proposition 5.2. . Any L separability

set for S--which is to say any countable dense set--will be a

separability set for X+. Set . We already

know all about this set because:

PROPOSITION 5.5 S. and SLr are indistinguishable.

PROOF Suppose w is in the set of p robability one in which SLri~
whenever . Then =  (Xt)Lr  i. . But if (Xt)Lr = j  i,
then we would have to have t E S.r, which can’t happen. Thus

t 6 S~’ ~~ X. = i. The opposite implication J is obvious from the
definitions of X and . qed

The process X+ is not strongly Markov for it may have oD for a
value and there are no transition probabilities for this point. Never-

theless X+ does satisfy a restricted version of the strong Markov

property. Effectively, it is strongly Markov except when it is at ~D.

Let Et denote the Borel field generated by s f t J .
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PROPOSITION 5.6 Let T be a stopping time with the property that

X- C I a.s. on T co. Then X satisfies the strong Markov

property at T.

PROOF By remarks following the definition, is a cluster point of

X~, s~T, s rational. But T CO«~ so in fact we see X
is a limit from the right of rationals for which = X- . ~ Thus we

can find a sequence T of rational valued stopping times such that

~ 

= X~}2014~P(Tc~. Fix j 6 I and t ~ 0 . The rationals

and the rationals translated by t are both separability sets hence

~T+t " ~ ~ ~’ Thus on ~ ~~ ’’

conditioning on F we have by Fatou’s lemma 
and the Markov property

~ lim sup I ~ .
By the choice of will be a limiting value of a.s. so this is

~ ~j0 -
To see there is actually equality, note that a.s. on ~T ~J

1 = ~ ’ ~

which implies equality for all j. qed

Many results follow easily from this. For instance, for any

stopping time T, the post-T process (.X- ~ t ~ OJ is again a

Markov chain with tha same transition probabilities. To see this,

apply proposition 5.6 to the times T + t 
n 

, where t 
n 

is chosen such

that a. s. on Fubini’ s has this

property) and let tn ~ o . We conclude with a final proposition

which concludes our description of the sets SLri.
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PROPOSITION 5.7 SLri is perfect in the right limit topology .

If ~ 
, it is a.s. nowhere dense; if co, it is a.s. the union

of left semi closed intervals, finite in each finite time interval.

PROOF For any set A C R, is perfect in the right limit topology.

SLri being closed in 0 , , to show it is nowhere dense we need only show

it contains no intervals. But it is B F measurable, so if it contained

an interval with positive probability, Fubini’s theorem would tell us

there is a t such that P t E interior of . In fact, as S.

and differ by sets of Lebesgue measure 0, i we can even require 
i

Si > 0}. But if qi = ~, 03C0I-{i} t -- 0 by Proposition 5.4,

a contradiction.

Now suppose qi is finite. We will prove the proposition for

Si, which is indistinguishable from Shr . Define

V0 = 0

Tn = > Vn : ’ Xt = i n = 0,1,...,

Vn = inf(t > i n = 0,1, , ...

For simplicity we assume i is recurrent and qi ? 0 so that both

Tn and Vn will be finite valued for all n. As S+i is closed in Or,

XT E S+i a.s. for all n, hence XT - i and Proposition 5.6 is 
r

applicable. Using this and Proposition 5.4 we see Vn - Tn is

a sequence of independent exponential random variables with parameter qi.
Thus Si is a union of intervals, closed on the left, and, as

~(Vn - Tn~ = oo, there can be at most finitely many in any finite

time. These intervals must also be open on the right, for otherwise

= i~ > 0 for some n, implying by the strong Markov property
that X remains in i for some time after V , a contradiction. qed
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