@article{SPS_1972__6__72_0, author = {Chatterji, Shrishti Dhav}, title = {Un principe de sous-suites dans la th\'eorie des probabilit\'es}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {72--89}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {6}, year = {1972}, mrnumber = {394810}, zbl = {0231.60023}, language = {fr}, url = {http://archive.numdam.org/item/SPS_1972__6__72_0/} }
TY - JOUR AU - Chatterji, Shrishti Dhav TI - Un principe de sous-suites dans la théorie des probabilités JO - Séminaire de probabilités de Strasbourg PY - 1972 SP - 72 EP - 89 VL - 6 PB - Springer - Lecture Notes in Mathematics UR - http://archive.numdam.org/item/SPS_1972__6__72_0/ LA - fr ID - SPS_1972__6__72_0 ER -
Chatterji, Shrishti Dhav. Un principe de sous-suites dans la théorie des probabilités. Séminaire de probabilités de Strasbourg, Tome 6 (1972), pp. 72-89. http://archive.numdam.org/item/SPS_1972__6__72_0/
[1] Sur la convergence forte dans les champs Lp Studia Math. 2, 51-67. | JFM
et (1930)[2] Martingales transforms. Ann. Math. Statist. 37, 1494-1504. | MR | Zbl
(1966)[3] Extrapolation and interpolation of quasi-linear operators on martingales. Acta Math. 124, 249-304. | MR | Zbl
et (1970)[4] An Lp - convergence theorem. Ann. Math. Statist. 40, 1068-1070. | MR | Zbl
(1969)[5] Un théorème général de type ergodique. Colloque C.N.R.S. Probabilités sur les structures algébriques. | MR | Zbl
(1969)[6] A général strong law. Inventiones Math. 9, 235-245. | MR | Zbl
(1970)[7] On the integrability of the martingale square function. Israel J. Math. 8, 187-190. | MR | Zbl
(1970)[8] On the law of the iteratad logarithm. Amer. J. Math. 63, 169-176. | JFM | MR | Zbl
et (1941)[9] A generalization of a problem of Stainhaus. Acta Math. Acad. Sci. Hung. 18, 217-229. | MR | Zbl
(1967)[10] A central limit theorem for uniformly bounded orthonormal systems. Trans. Amer. Math. Soc. 79, 281-311. | MR | Zbl
(1955)[11] On a problem of Steinhaus. Acta Math. Acad. Sci. Hung. 16, 310-318. | MR | Zbl
(1965)[12] On lacunary trigonometric series I. Proc. Nat. Acad. Sci. 33, 333-33 | MR | Zbl
et (1947)[13] Some properties of trigonometric series whose terms have random signs. Acta Math. 91, 245-301. | MR | Zbl
et (1954)[14] A martingale analogue of Kolmogorov's law of the iterated logarithm. Z. Wahr. verw. Geb. 15, 279-290. | MR | Zbl
(1970)[15] A converse to the law of the iterated logarithm. Z. Wahr. verw. Geb. 4, 265-268. | MR | Zbl
(1966)[16] On the law of the iterated logarith for uniformly bounded orthonormal systems. Trans. Amer. Math. Soc. 92, 531-553. | MR | Zbl
, (1959)