Phase transition and Martin boundary
Séminaire de probabilités de Strasbourg, Tome 9 (1975), pp. 305-317.
@article{SPS_1975__9__305_0,
     author = {F\"ollmer, Hans},
     title = {Phase transition and {Martin} boundary},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {305--317},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {9},
     year = {1975},
     mrnumber = {426176},
     zbl = {0367.60112},
     language = {en},
     url = {http://archive.numdam.org/item/SPS_1975__9__305_0/}
}
TY  - JOUR
AU  - Föllmer, Hans
TI  - Phase transition and Martin boundary
JO  - Séminaire de probabilités de Strasbourg
PY  - 1975
SP  - 305
EP  - 317
VL  - 9
PB  - Springer - Lecture Notes in Mathematics
UR  - http://archive.numdam.org/item/SPS_1975__9__305_0/
LA  - en
ID  - SPS_1975__9__305_0
ER  - 
%0 Journal Article
%A Föllmer, Hans
%T Phase transition and Martin boundary
%J Séminaire de probabilités de Strasbourg
%D 1975
%P 305-317
%V 9
%I Springer - Lecture Notes in Mathematics
%U http://archive.numdam.org/item/SPS_1975__9__305_0/
%G en
%F SPS_1975__9__305_0
Föllmer, Hans. Phase transition and Martin boundary. Séminaire de probabilités de Strasbourg, Tome 9 (1975), pp. 305-317. http://archive.numdam.org/item/SPS_1975__9__305_0/

[ 1] Dobrushin, R.L.: Description of a random field by means of conditional probabilities and conditions of its regularity. Theor. Probability Appl. 13, 197-224 (1968). | MR | Zbl

[ 2] Dobrushin, R.L. and Minlos, R.A.: Construction of a one-dimensional Quantum Field via a continuous Markov Field. To appear. | MR | Zbl

[ 3] Dunford, N. and Schwartz, J.T.: Linear Operators I. New York: Interscience 1958. | MR | Zbl

[ 4] Dynkin, E.B.: Entrance and Exit Spaces for a Markov Process. Actes, Congrès intern. Math., 1970. Tome 2, 507-512 (1971). | MR | Zbl

[ 5] Dyson, F.J.: Existence of a phase-transition in a one dimensional Ising Ferromagnet. Comm. Math. Phys. 12, 91 (1969). | MR

[ 6] Föllmer, H.: The Exit Measure of a Supermartingale. Z. Wahrscheinlichkeitstheorie verw. Geb. 21, 154-166 (1972). | MR | Zbl

[ 7] Georgii H.-O., : Two Remarks on Extremal Equilibrium States. Comm. Math. Phys. 32, 107-118 (1970). | MR

[ 8] Guerra, F., Rosen, L., Simon, B.: The P(φ)2 Euclidean Quantum Field Theory as Classical Statistical Mechanics. To appear.

[ 9] Meyer, P.A.: Un lemme de théorie des martingales. Sém. Probabilités III. Lecture Notes Mathematics 88 (1969). | EuDML | Numdam

[10] Nelson, E.: The Free Markoff Field. J. Functional Analysis 12, 211-227 (1973). | MR | Zbl

[11] Parathasarathy, K.R.: Probability measures on metric spaces. New York-London: Academic Press 1967. | Zbl

[12] Preston, C.J.: Specification of random fields. To appear. | MR | Zbl

[13] Simon, B.: Positivity of the Hamiltonian Semigroup and the Construction of Euclidean Region Fields. To appear. | MR

[14] Spitzer, F.: Random fields and interacting particle systems. Notes on lectures given at the 1971 MAA Summer Seminar, Williams College, Williamstown, Mass. Mathematical Association of America 1971. | MR