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A PROBABILISTIC APPROACH TO NON-LINEAR DIRICHLET PROBLEM

By Masao Nagasawa

(1) Given a continuous strong Feller process (xt,Px)
on a nice topological state space S ( which will be called

the base process), an open set D of S, a bounded continuous

non-negative function c(x) in D (put c = 0 on the complement

Dc of D), and bounded continuous functions qn (x) in D

(qn = 0 on DC) satisfying

E qn (x) = 1, for x ~ D.
..

Let us consider a non-linear Dirichlet problem, given a

bounded measurable function ~ on the boundary aD,

F 
Au (x) + c (x) ( E qn (x) u (x) n - u(x)) = 0, in D,

(1) 
n_0t, u (b) - ~ (b) , on ’~D, .

where A is Dynkin’s characteristic operator for the base

process 

We will show that solutions (not necessarily unique)

of the non-linear Dirichlet problem can be obtained in

terms of a branching Markov process under the condition

1.

(2) As is well known in the theory of Markov processes,

the unique solution of linear Dirichlet problem

Au(x) = 0 in D, 

(2) ~ u (b) - ~ (b) on aD,

lim u(x) = 03C6(b), if b is regular and 03C6 is

continuous at b
L bEaD 

is obtained in terms of the base process under the assumption
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Px [T  ~] - 1, for x E 5,

where T = inf{t ~ 0; xt E is the first hitting time to
the boundary ~D. One expression is

u (x) _. Ex [~ 

(cf, e.g. [1] p.32, Theorem 13.1). We have another expression
in terms of the stopped process at the boundary 

xt - 

Let Pt be the transition probability of xt, and f be a

bounded measurable function on D which coincides with ()) on
the boundary. Then

(3) u(x) = lim Ptf(x)

gives the same solution. The solution does not depend on
the value of f in D. For, since Px[T  ~] = 1,

u(x) = lim E [f (xt) ] = E [lim f (xt) ]
= 

We will express solutions of (1) in the form of (3)

taking the transition probability of a branching Markov

process and f instead of Pt and f ( will be defined by (4)).

(3) For simplicity, we assume 0, but the

same arguments can be carried over for general case.

Let (Xt, Px) be c, q )-branching Markov process
on S , where xt is the stoped process of xt at dD and .

S = U 
n=0

For a bounded measurable function f on D, we define f on S bY

v (*) Cf. [2],[3]. ° Here, we take (dy),
i.e. n-particles created at x start continuously.

(**) Dn is the n-fold Cartesian product of D, and D0 = {03B4}
an extra point.
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~f (x) - when x = (xl, ... ,xn) ,
c~) ~ f cs) - 1,

1~(A) = 0.

f~) ~ 1, f is bounded on S .

Let Pt be the transition probability of the branching
Markov process. Taking a bounded measurable function f on

D with the uniform 1, we assume the existence

of the limit

(5) u (x) - lim 

(We will discuss the existence of the limit in the next

section.)

(I) u(x) is Pt-invariant.
For, lim u(x).

t-->~

u(x) is multiplicative, i.e. , u (x) - u (x) .

For, since P. satisfies the branching property

Pt (x ) = Pt (x ),

we have

u(x) - u (x ) .

(III) If_ f belongs to the domain of the weak generator G

of then f belongs to the domain of the weak generator of

Pt, the transition probability of the killed process of

xt b~ 
Proof. Pt~ satisfies S-equation; for x ~ D,

Pt (x) - + 

where F (x,u) - E qn (x) u (x) n. Therefore
n=0 ~
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Pt(x) - f(x) t 
= Potf(x) - f(x) 

t + t t0dsos (cF (.,Pt-s)) (x) .

The second term of the right hand side converges to cF(x,f)

when t tends to zero. Therefore, if the left hand side

converges, then so does the first term of the right hand

side.

(IV) u(x) defined ~ (5) belongs to the domain of the weak

generator G of Pt and Gu(x) = 0.

Since u is Pt-invariant, u belongs to the domain of

G, and Gu(x) = 0.

Therefore,u(x), x E D belongs to the domain of the

weak generator of P~, and by Kac’s theorem it belongs to

the domain of the weak generator of Pt. Thus we have, by
(II) , (III) and (IV),

PROPOSITION 1. If u(x), xE D, defined ~ (5) exists,

then it satisfies

Au(x) + c(x){ E q (x)u(x)n - u(x)} = 0 in D,
n=0 ~

and u(b) = f(b), b ~ aD, where A is Dynkin’s characteristic

operator of the base process.

Remark. Even when II f ~ ~ ~ 1, if the limit in (5) } exists

and if F(.,f) is bounded, then (I)~(IV) and Proposition 1

hold.

(4) Let T be the killing time of the base process by

and T be the first hitting time to the

boundary 2D, and we assume

(6) Px [T  T] > e > 0, for all x ~ D.

Remark. (6) is satisfied if e. For,
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LEMMA 1. Under the assumption (6)

Px 2D for all i or Xt =6 at some t  or the

number of particles in D tends to oo when 1,

where Xt = (Xt, ... ~Xn t (t) ) , °
Proof. Let a be the first hitting time to Dm , and

define sequences of Markov times {~n} and {n n } by

~1=Q, 

02 - ~12 - Q2 + 

and so on. Then

Px[Xt visits Dm infinitely of ten]

=  J

= lim Px [03C3n  +~]

~ lim (1-~) (1-~m)n = 0,
- 

because

Px[03C32  +~] = Ex[PX03C31 [03C4 + 03C3103B803C4  +~] ; 03C31  +~]

m

[T  T]);o.  +00] ]
~ x X 

i=1 
XQ 1

 (1-E) (1-~m),

and so on. Thus we have the lemma.

As a corollary of Lemma 1, we have

PROPOSITION 2. Given a measurable function 03C6 on the

boundary dD with ~ ~ ~~ j 1, set

(7) f = ~ on 3D

0 in D.
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Then,

(8) [f (Xt) ] , xED, exists.

PROPOSITION 3. Given 03C6 and define f as in Proposition 2,

then u defined by (8) satisfies

(9) lim u (x) - ~ (b) ,
xE D

if b is a regular point of the boundary ~D and if § is
continuous at b.~ )

Proof.

!u(x) - Hb)! ~ .

Put B = {Xt hits first to the boundary before branching}.

I = lim Ex [ ~~f (Xt) - ~ (b) ~ !;B]

- lim Ex [ ( f (xt) - ~ (b) ( ~ BJ ~
because Xt = xt = xtnT on B;

~ Ex [ I ~ (xT) - ~ [b) I ~. T  T] 1

~ Ex[~~(xT) - ~(b) ~l ~

where Ex is the expectation with respect to the base process.
If b is regular and if ()) is continuous at b, then there

exists a neighbourhood Ub of b and

(10) > E~[~(x~) - Hb)~] J  E for all Ub~

(cf.e.g. [1] ] p.32, Theorem 13.1). Thus we have I  e.

II = ]

i 2 ~I 2Px [T > T]  2 (1-Px [T  T])

 2(1 - Px[T  s  T]), for any s > 0.

(*) The regularity is for the base process.
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s  T] = T  s]

~ c~)  s].

Take s sufficiently small so that exp (- ~ ~ c ~ ~ s) ~ 1 - e.

Since P [T  s] is lower semicontinuous in x (cf .e.g. [1]

p.28 Lemma 13.2) and  s] = 1 because b is regular,

there exists a neighbourhood Ub of b such that

Px[T  s] ~ 1 - e, for all x e Ub.

Therefore

Px[T  s  T] ~ (1-e)~ > 1 - 2e.

Thus we have II  4e, and

 5E, for all x E 

Since c is arbitrary, (9) is proved.

Remark. We 1 in Proposition 3. However,

if )) is bounded and if the limit exists in (8), then (9)

is valid.

Thus we have

THEOREM. Under the assumption (6), there exists

xED,

where f is defined by (7) for a given {) on ~D (~ 03C6~ ~ 1),

and u is a solution of non-linear Dirichlet problem (1)

satisfying the boundary limit property (9).

we proved Theorem in the case of 0. When qn is

not non-negative, we can prove the theorem using the branch-

ing Markov process with sign (cf. [3],[4]) instead of usual

branching Markov process.

Moreover, there is no difficulty to generalize the

result to the system 
-
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Aiui + ci{  ...  qin1...nk (u1 )nl...(uk)nk - ui} = 0

in D, for i = 1,2,...,k,

ui(b) = ~i(b) on dD,

where (x) ( = 1, x e D (= 0 outside D). 
-

To do this, what we need is just to introduce an appropriate
branching Markov processes(cf. [3] pp.505-507).

(5) Instead of (7), let us take

(11) f = ~ on ~D,

[g in D,

as an initial value, where g is a measurable function in D

with )) 1. When ( ~  1, the limit

(12) u(x) = lim ]

exists and it does not depend on the choice of the initial
value g in D. Let n~ be the number of particles in D at t.
By lemma 1,

(13) xl E ?D for all i or X =6
at some s 

+ lim S when s 
x t s

where the second term is equal to zero when jt g~  1 and

the first term does not depend on g.
In general, the limit in (12) depends on the choice of

the initial value g in D if

(14) when t 

at some point x0 in D. For example, taking ~ = 1 on the
boundary for simplicity, if we take fl = 1 on D, then
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u (x) - ] = 1, for all x E D, (*)
1 x 1 t

while if we take f ~ = 1 on 3D (= 0 in D), then

u (x) - ]

takes value less than one at D, because of (13) and

(14). Actually, is the extinction probability of

particles from D (cf . [5] , [6] ) .

Remark. In order to express the stochastic solution,

defined in (5) or (8), in terms of "the first hitting time

to the boundary", we must introduce a vector of hitting

times of every branches of the branching Markov process.

When aD for all i or Xt. = 8 at some t  °o, let Ti be
the first hitting time of X to the boundary, where gt =

( X1t, ..., Xn (t)t). Then put

T = (T1,T2~...,Tn)~

(under the assumption, the total number of paticles is

finite, say, n). When the number of particles in D tends

to infinity, let’s put T = ~. Let us call T the first

hitting time of the branching Markov process to the boundary .

Then we have

(15) u(x) = lim E rrBX )] ]t

where

= ,X~ ~-2 ~...,XT n ).

(*) We assume here that the branching Markov process does

not explode in finite time. When explosion occurs,

ul(x) - 1 - explosion probability.
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