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A PROBABILISTIC APPROACH TO NON-LINEAR DIRICHLET PROBLEM

By Masao Nagasawa

(1) Given a continuous strong Feller process (xt,Px)
on a nice topological state space S ( which will be called
the base process), an open set D of S, a bounded continuous
non-negative function c(x) in D (put ¢ = 0 on the complement
p° of D), and bounded continuous functions qn(x) in D
(qn = 0 on DY) satisfying

z lqn(X)I =1, for x € D.
n=0

Let us consider a non-linear Dirichlet problem, given a

bounded measurable function ¢ on the boundary 9D,

Au(x) + c(x)( ¥ q (x)u(x)™ - u(x)) =0, in D,
n=0 n

(1)

u(b) = ¢(b), on D,

where A is Dynkin's characteristic operator for the base
process (xt,Px).

We will show that solutions (not necessarily unique)
of the non-linear Dirichlet problem can be obtained in

terms of a branching Markov process under the condition

el 1.

(2) As is well known in the theory of Markov processes,

the unique solution of linear Dirichlet problem

Au(x) = 0 in D,
(2) u(b) = ¢(b) on 2D,
lim u(x) = ¢(b), if b is regular and ¢ is
xeD .
x—bedD continuous at b,

is obtained in terms of the base process under the assumption
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Px[T < o] =1, for x € 5,

where T = inf{t >

0; x € 9D} is the first hitting time to

the boundary ?2D. One expression is
u(x) = E [¢(x5)],

(cf. e.g. [1] p.32, Theorem 13.1). We have another expression
in terms of the stopped process at the boundary

X, = XeAT
Let ﬁt be the transition probability of it' and f be a
bounded measurable function on D which coincides with ¢ on
the boundary. Then

(3) u(x) = lim P f(x)
t— o
gives the same solution. The solution does not depend on

the value of £ in D. For, since Px[T < o] =1,

u(x) = lim Ex[f(§t)] = E_[lin f(§t)]

t— o t—> o

E, [0 (xp) 1.

[}

We will express solutions of (1) in the form of (3)
taking the transition probability of a branching Markov

process and £ instead of ﬁt and £ (F will be defined by (4)).

(3) For simplicity, we assume qn(x) > 0, but the

same arguments can be carried over for general case.

- *
Let (xt, Px) be (xt, c, qn)-branching Markov process( )

on S8 , where ;t is the stoped process of x, at D and

t

o)

s = ) 5Pu e O

n=0

For a bounded measurable function f on D, we define £ on § by

.(*) Cf. [2],[3]. Here, we take ﬂn(x,dy) = 6(x,---,x)(dy)f
i.e. n-particles created at x start continuously.

(**) D" is the n-fold Cartesian product of D, and Bo = {&§}
an extra point.
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Tx) = £(x)) %o oxE(x ), when X =(xq,+++,X),
(4) T =1,
Ty = o.

if || £]l < 1, T is bounded on S.
Let Pt be the transition probability of the branching
Markov process. Taking a bounded measurable function £ on

D with the uniform norm || £|| £ 1, we assume the existence
of the limit

?Kx).

(5) u(x) = lim Pt

t—>

(We will discuss the existence of the limit in the next
section.)

(I) u(x) is Pt—invariant.
2o
For, P u(x) = lim P f(x) = u(x).
s t—soo t+s

(II) u(x) is multiplicative, i.e., u(x) = D(x) .

For, since Pt satisfies the branching property
e
P Tx) = {t} (x) ,
we have

u(x) = lim{t%(x) =0(x).

t—> o

52, the transition probability of the killed process of

it by exp(-fgc(is)ds).

Proof. Pé?'satisfies S-equation; for x € D,

.

PA(x) = BOE(x) + [5as[PO(x,dy)c(¥)F(y /P,

where F(x,u) = $ qn(x)u(x)n. Therefore
n=0
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~ =0
P.E(x) - £(x) _ PUE(x) - £(x) N /
t - t t

t

5 ) (x) .

t-s

dsﬁg(cF(-,P

The second term of the right hand side converges to cF (x,f)
when t tends to zero. Therefore, if the left hand side
converges, then so does the first term of the right hand

side.

generator G of Pt and Gu(x) = 0.

Since u is Pt-invariant, u belongs to the domain of
G, and Gu(x) = 0.

Therefore,u(x), x € D belongs to the domain of the
weak generator of ﬁo, and by Kac's theorem it belongs to
the domain of the weak generator of ﬁt' Thus we have, by

(I1),(III) and (IV),

PROPOSITION 1. If u(x), x€ D, defined by (5) exists,
then it satisfies

Au(x) + c(x){ ¥ qn(x)u(x)n - u(x)} =0 in D,
n=0
and u(b) = f£(b), b € 2D, where A is Dynkin's characteristic
operator of the base process.
Remark. Even when || £|| £ 1, if the limit in (5) exists
and if F(.,f) is bounded, then (I)~(IV) and Proposition 1
hold.

(4) Let T be the killing time of the base process by
exp(—fgc(xs)ds) and T be the first hitting time to the
boundary 2D, and we assume

(6) P IT < 1] 2 ¢ >0, forall x € D.

Remark. (6) is satisfied if E_[exp(-||c|| T)] 2 e. For,

P IT < 1] = E [exp(-[gc(x )ds)] 2 E lexp(-|| c|| T)1.
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LEMMA 1. Under the assumption (6)

Px[th:G oD for all i or X, = § at some t < », or the

number of particles in D tends to « when t—] =1,

where Xt = (Xi,---, 2(t)).

Proof. Let o be the first hitting time to D™ , and
define sequences of Markov times {on} and {nn} by

g, = 0, = 0, + Toe0 ’

1 1 1 1
2 ny + oloenl n, =0, + Toecz,

(9

and so on. Then
Px[xt visits D" infinitely often]
= PXIC?{cn < +4w}]

= lim Px[on < 4]

n—sx
< lim (1-¢) (1-e™M™ = o,
T now
because
P log <+°] <1 -P [T<7T]<1l-ce,
PX[UZ < 4] = EX[PXU [t + Ulo GT < +oo];gl < 4]
1
m
L E M1 - 'E P . [T < 1]);j0; < +=]
i=1 X
%1

(1-¢) (1-€™),

A

and so on. Thus we have the lemma.
As a corollary of Lemma 1, we have

PROPOSITION 2. Given a measurable function ¢ on the
boundary 9D with || ¢|| £ 1, set

(7) f=(¢ on 9D

0 in D.
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Then,

(8) u(x) = lim Ex[’f‘(xt)], x € D, exists.

t— o

PROPOSITION 3. Given ¢ and define f as in Proposition 2,

then u defined by (8) satisfies

(9) lim u(x) = ¢(b),
X€D
x—beaD

if b is a regular point of the boundary 3D and if ¢ is
(*)

continuous at b.
Proof.

. ~
lu(x) - ¢(b)| < lim E_[|E(X) - ¢(b)|].
t—> o
Put B = {xt hits first to the boundary before branching}-.

I = lim E_[|T(X,) - ¢(b)|;B]
t—e

= ti_x)nmEx[If(xt) - ¢(b)|;BI,

because X, = x, = X

£ t on B;

tAT
S Eo(xg) - 9|5 T < 7]

S E llé(xg) - o(0) ][],

where Ex is the expectation with respect to the base process.
If b is regular and if ¢ is continuous at b, then there

exists a neighbourhood U,_ of b and

b
(10) Ex[|¢(xT) - ¢(b)|] < e for all xe Uy
(cf.e.g. [1] p.32, Theorem 13.1). Thus we have I < €.

II

ti_x’nwExH/f\(Xt) - ¢ () |;B]

21| o1l B, (5°)

A
A

2P [T 2 1] £ 2(1-P_IT < t])

A

2(1 - Px[T < s < 1)), for any s > 0.

(*) The regularity is for the base process.
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PIT < s < 1] Px[exp(-fzc(xs)ds), T < s]

nv

exp(—||c||s)Px[T < s].

Take s sufficiently small so that exp(-||cl||s) 21 - e.
Since Px[T < s] is lower semicontinuous in x (cf.e.g.[l]
pP.28 Lemma 13.2) and Pb[T < s] = 1 because b is regular,

' of b such that

there exists a neighbourhood Ub

- L]
Px[T <s] 21 e, for all x € Ub.
Therefore
PIT <s <1l 2 (1-a)? > 1 - 2e.
Thus we have II < 4, and

lu(x) - ¢(b)| < 5e, for all x € U NU.

Since € 1is arbitrary, (9) is proved.

Remark. We assumed || ¢|| < 1 in Proposition 3. However,
if ¢ is bounded and if the limit exists in (8), then (9)
is valid.

Thus we have

THEOREM. Under the assumption (6), there exists

u(x) = lim Ex[’f‘(xt)], x e D,

t—o

where f is defined by (7) for a given ¢ on 9D (|| ¢[| 2 1),

satisfying the boundary limit property (9).

We proved Theorem in the case of a, > 0. When q, is
not non-negative, we can prove the theorem using the branch-
ing Markov process with sign (cf.[3],[4]) instead of usual
branching Markov process.

Moreover, there is no difficulty to generalize the

result to the system
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N n n
Au, +c.{% ...% q* (uy) 1...(uk) k
k

n n -ul=o0
0 Mpe--

i
in D, for i = 1,2,...,k,

ui(b) = ¢i(b) on 9D,

where Z---Zlq:

(x)] =1, x € D (= 0 outside D).
R

To do this, what we need is just to introduce an appropriate
branching Markov processes(cf. [3] pp.505-507).

(5) Instead of (7), let us take

(11) £ = ¢ on 9D,
g in D,

as an initjal value, where g is a measurable function in D
with || g/ < 1. when || g|| < 1, the limit

(12) u(x) = ii“mnx (£x,)]

exists and it does not depend on the choice of the initial
value g in D. Let ng be the number of particles in D at t.
By lemma 1,

(13) u(x) = lim E_[£(X,); x* € 7D for all i or X = &
Cteoo X t s s
at some s < =]

+ ii_:nmnx[‘f‘(xt); nY t= when s f«],
where the second term is equal to zero when || g|| < 1 and
the first term does not depend on g.
In general, the limit in (12) depends on the choice of
the initial value g in D if

(14) Px[nE T® when t T®] > 0

at some point X, in D. For example, taking ¢ = 1 on the

= 1 on D, then

boundary for simplicity, if we take fl =
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u;(x) = lim E [f (x,)] =1, for all x € 5,(*)

t—

while if we take f0= 1 on 9D (= 0 in D), then

ug (x) = lim E_ (f (x,.)1
Lo 0%t

takes value less than one at X, € D, because of (13) and
(14) . Actually, uo(x) is the extinction probability of
particles from D (cf.[5],[6]).

Remark. In order to express the stochastic solution,
defined in (5) or (8), in terms of "the first hitting time
to the boundary", we must introduce a vector of hitting
times of every branches of the branching Markov process.

When Xi 1edD for all i or xt = & at some t < =, let T, be
the f1rst hitting time of X to the boundary, where xt
1 t
(Xt,---,XE( )). Then put
T = (Ty, Tyl T,

(under the assumption, the total number of paticles is
finite, say, n). When the number of particles in D tends

to infinity, let's put T = ». Let us call T the first
hitting time of the branching Markov process to the boundary.

Then we have

/\
15 u(x) = lim E_[£(X,)]
(15) Lin E, [F0X,
= B (Bx) T < ©] = E_[§(%) T < =],
where
1 2 n
= (Xr ,X5 ,..e,X2 ).
xT Tl T2 Tn

(*) We assume here that the branching Markov process does
not explode in finite time. When explosion occurs,

ul(x) = 1 - explosion probability.
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