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One-dimensional Potential Embedding

by R.V. Chacon and J.B. Walsh

Universite de Strasbourg
Séminaire de Probabilites

Let B = {Bt, t > 0} be a standard Brownian motion from zero.

Skorokhod’s embedding theorem tells us that if p is a probability
measure of mean zero and finite second moment there exists a stopping time

T such that BT has distribution p , and such that E{T}  oo . . (We say

p is embedded in B.) This theorem has inspired a large number of

extensions and ramifications. Notably, H. Rost has shown how to decide if

a given measure can be embedded into a given Markov process. In general,

one must use randomized stopping times for this embedding, but non-

randomized stopping times suffice in many interesting special cases. For

n-dimensional Brownian motion, for instance, one can restrict oneself to

natural stopping times as long as the target measure has a continuous

potential [1]. The construction of the stopping time in that paper is

somewhat complicated to describe in general, but it is quite transparent
in the case n = 1 , where it serves to prove Skorokhod’s theorem. We

thought it would be amusing to give an account of this construction: not

only is it one of the few places we know of where one can use classical

one-dimensional potential theory with a straight face, but the heart of

the proof can be explained with four pictures.

Let’s recall a few facts about potential theory on the line.

The potential kernel is k(x) = - If p is a measure on R , its

potential Up is given by

U~(x) _ - yl p(dy) . .

Then:

1° Up(x) is a concave function, finite iff |y| p(dy)  co . .
2° If p is a probability measure with mean zero and if 6~

is the unit mass at zero, Furthermore,

0 as Ix~ ~ ~ .

3° If p, ~1, u2, ... are measures such that + Uu(x)

for all x , then weakly.
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We need one further fact concerning the balayage of potentials.

4° Let v be a probability measure with finite mean and let

[a,b] be a finite interval. Let B be Brownian motion

with initial distribution v and define

Tab = inf {t : Bt ~ a or B t > b} . °

Then if v’ is the distribution of BT , Uv’ is linear in [a,b] and

Uv’ = Uv outside [a,b]: 
ab

Now let  be a probability measure with mean zero and let B

be a Brownian motion from zero. We will construct an increasing sequence

T~  Tl  T2  .. of (non-randomized) stopping times increasing to a

limit T , such that B has distribution p . Let n = 0, 1, ,..

be the distribution of B . The following pictures will explain our

construction: 
~
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... and the following words will explain our pictures.

Choose TC = 0 , so p.. 
= Then the potentials

Up~ (= - Ixl) and Up are as shown in 0 . (see 2°). Next, choose an

x ~ Up(x)  Up~(x) , draw a tangent to the graph of Up at x , and let

aI and bI be as in 1 . (The fact that al and bl are finite

follows from 2°.) Now let TI = Ta1b1 (= first exit from (aI, bI).)
Then by 4 , BT 1 has the distribution pi whose potential is graphed

. 

in 1 . Continuing in the same vein, choose another x 9 Up(x)  Upi(x) ,
and draw a tangent to the graph of Up at x . If a2 and b2 are as

in 2 , let T2 = Ti + Ta2b2o 0- (i.e. the first exit from (a2, b2)
after Here, 6t is the usual translation operator). Then Up and

Uu2 are as shown in 2 . At the next step, we set T3 = T2 + 2’
etc. At each stage, Up is piecewise linear and Up . We

haven’t been too specific as to exactly how we choose the functions Uun ’
and in fact it doesn’t much matter. What is important is that we can

choose them so that they decrease to the functidn Up - indeed, any concave

function can be written as the infimum of a countable number of affine

functions, and each Up is just the infimum of finitely many.

But now Up , so that by 30 , weakly. At the same

time, B T + BT by continuity, hence the distribution of BT is p . It

remains to show that E{T} = The main step in this is the obser-

vation that B2 - t is a martingale. However, to conclude from this that

E{T} = E{B2T} we need an additional argument to show that E{T}  oo . .
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There are a number of ways to see this. Here is one in the spirit of

this paper; based on the fact that if v is a measure on the line having
mean zero and potential Uv , then x2dv is equal to the area between

the curves y = Uv(x) and y = (= - Ixl). (This follows from a

direct calculation, for, since = 0 , we can write

2y-~ (y-x)03BD(dx) 
if y ~ 0

- H - Uv(y) =

2 ~y (x-y)03BD(dx) if y > 0 ,

so that the area between the two curves is

~-~ (- |y| - U03BD(y)dy = 2 0-~ dy y-~ (y-x)03BD(dx) + 2 ~0 dy ~y (x-y)03BD(dx)

=2 (x-y)dy

= ~~x2d03BD .)

But now, since Bt2T - tAT n is a martingale and Bt T is
bounded, we can let t ~ ~ to See that E{Tn} = E{BT2}. This n
last equals the area between - Ixl and the potential Uun of the distri-

bution of B , which was itself constructed to be between - Ixl and

Uu(x) . Thusnthis area is bounded by the area between - Ix I and Uu(x) ,

i.e. by Since there is clearly equality in the limit,



23

E{T} = lim = x2dp .
Three remarks are worth adding here. First, Dubins’ scheme for

constructing the "Skorokhod time" [2] is actually a special case of the

above. Indeed, his method gives what is essentially a canonical method

for choosing the intervals [an, b ]. Secondly, we need not necessarily

start with the distribution Indeed, if p and v are probability

distributions with finite potentials, and if Up  Uv , let Bt have initial
distribution v. Then there exists a non-randomized stopping time T

for which the distribution of BT is p. The proof is by picture:

Finally, if p does not have a finite second moment but, say,

xp dp for some p > 1, this method yields a stopping time T for

which  ~ , , though the proof of this last is more complicated.
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