@article{SPS_1981__15__227_0, author = {Rogers, L. C. G.}, title = {Williams' characterisation of the brownian excursion law : proof and applications}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {227--250}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {15}, year = {1981}, mrnumber = {622566}, zbl = {0462.60078}, language = {en}, url = {http://archive.numdam.org/item/SPS_1981__15__227_0/} }
TY - JOUR AU - Rogers, L. C. G. TI - Williams' characterisation of the brownian excursion law : proof and applications JO - Séminaire de probabilités de Strasbourg PY - 1981 SP - 227 EP - 250 VL - 15 PB - Springer - Lecture Notes in Mathematics UR - http://archive.numdam.org/item/SPS_1981__15__227_0/ LA - en ID - SPS_1981__15__227_0 ER -
%0 Journal Article %A Rogers, L. C. G. %T Williams' characterisation of the brownian excursion law : proof and applications %J Séminaire de probabilités de Strasbourg %D 1981 %P 227-250 %V 15 %I Springer - Lecture Notes in Mathematics %U http://archive.numdam.org/item/SPS_1981__15__227_0/ %G en %F SPS_1981__15__227_0
Rogers, L. C. G. Williams' characterisation of the brownian excursion law : proof and applications. Séminaire de probabilités de Strasbourg, Tome 15 (1981), pp. 227-250. http://archive.numdam.org/item/SPS_1981__15__227_0/
[1] Une solution simple au problème de Skorokhod. Séminaire de Probabilités XIII, SLN 721, Springer (1979). | Numdam | MR | Zbl
, ,[2] Poisson point processes attached to Markov processes. Proc. 6th Berkeley Symposium Math. Statist. and Prob. Univ. of California Press (1971). | MR | Zbl
,[31 Lois de certaines fonctionelles du mouvement Brownien et de son temps Local. Séminaire de Probabilités XV (1981).
, ,[4] On the sojourn times of killed Brownian motion. Séminaire de Probabilités XII, SLN 649, Springer (1978). | Numdam | MR | Zbl
[5] Formulas for stopped diffusion processes with stopping times based on the maximum. Ann. Probability 5 pp.601-608 (1977). | MR | Zbl
[6] Le problème de Skorokhod; Une remarque sur la démonstration d'Azéma-Yor. Séminaire de Probabilités XIV, SLN 784, Springer (1980). | Numdam | MR | Zbl
[7] A stopped Brownian motion formula. Ann. Probability 3 pp.234-246 (1975). | MR | Zbl
[8] Path decomposition and continuity of local time for one-dimensional diffusions. Proc. London Math. Soc. (3) 28 pp.738-768 (1974). | MR | Zbl
[91 On a stopped Brownian motion formula of H.M. Taylor. Séminaire de Probabilités X, SLN 511, Springer (1976). | Numdam | MR | Zbl
[10] The Itô excursion law for Brownian motion. (unpublished-but see §II.67 of Williams' book 'Diffusions,Markov processes, and martingales' (Wiley, 1979).)