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SOME REMARKABLE MARTINGALES

D.W. STROOCK 
(*) and M. YOR (**)

0. INTRODUCTION :

In the second part (sections 5)-9)) of our previous paper [6], we discussed
certain measurability problems which arise in the study of continuous martingales.
In particular, we addressed the problem of determining when a continuous martingale
is "pure" in the sense of Dubins and Schwarz That is, given a continuous
martingale M(.) with M(0) = 0, one knows that M(t) = B o where B(.)
is a Brownian motion and M,M>. is the increasing process in the Doob-Meyer
decomposition of M2(.). Assuming (as we do throughout) that M,M> = oo, it is

easily seen that B(.) is M(.)-measurable. However, it is not true in general that
M(.) is B(.)-measurable.

In fact, if M(.) is B(.)-measurable, then M(.) enjoys various special
properties, of which the most interesting is that every M(.)-adapted martingale
admits a representation as a dM(t)-stochastic integral (cf. section 5) of j~6J).
Thus there is good reason for wanting to investigate when M(.) is B(.)-measurable,
and it is for this reason that Dubins and Schwarz assigned this property a name.
The adjective which they chose is "pure".

The aim of our earlier work on this subject was to provide some insight into
the property of "purity" and to relate it to questions about stochastic differential
equations and martingale problems. Thus, for example, we pointed out that although
a pure martingale is always extremal (cf. ~1~ or section (5) of ~6~ ) , a plentiful
source of extremal martingales which are not pure comes from strictly weak
(i.e. not strong) solutions to stochastic differential equations for which the
associated martingale problem is well-posed (cf. Theorem (5.2~ in [6J). Unfortuna-
tely, our results in [6] were far from being definitive and we are sorry to admit
that even now this situation has not changed as much as we had hoped it might. None-
theless, we present in sections I) and 2) a few criteria which guarantee the purity
of certain Brownian stochastic integrals.

In section 3) we take up a slightly different question about measurability
relations between martingales which are intimately connected with one another. Here
we look at a complex Brownian motion = X(t) + iY(t) starting at zo ~ and
the associated "Lévy area" process

(X(s) dY(s) - Y(s) dX(s)). .

Obviously Q/’) is However, we show (cf. Theorem (3.4)) that

f(.) is CL(.)-measurable if and only if 0. As we will see, what causes

problem when z~ 
= 0 is the impossibility of defining the phase of ~(t) as t ~ 0.

We have included this example in the present paper not because we consider it to be
closely related to the question of purity but because we believe that it provides
another good example of the same sort of measurability questions coming from
"naturally" connected martingales.

It remains our belief that there exist both a general formulation of such problems
and a general method of attacking them. As yet, we are sorry to report that we
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ourselves have discovered neither.

1. PURITY AND CERTAIN STOCHASTIC INTEGRALS :

Let filtered probability space satisfying the usual

completeness and continuity assumptions. Suppose that j3(*) is an {~ )-Brownian
motion and let X(.) be an (TT )-adapted solution to

(1.1) X(t) = x 
o 

+ ’’0 o(X(s))dS(s) + t0 b(X(s))ds, t - > 0,

where 0 and b are locally bounded measurable functions on R into itself. The

main goal of this section is to prove the theorem whose statement we now give.

Theorem (1.2) . Let 03C6 : R + R be a measurable function and set

(1.3) M(t) = t0 03C6(X(s)) 03C3(X(s))d03B2(s), t ~ 0.

If the following conditions hold : :

i) (~(’) and 02(.) are uniformly positive,

ii) b (.) is uniformly bounded,

iii)~(.) is a function of local bounded variation such that there is a bounded

measurable function f(.) and a function ~(’) of bounded variation for

~2 (x) f(x)dx + ~(x+) ~(dx),
° 

then M(.) is pure.

The proof of Theorem (1.2) will be accomplished in several steps. The first
few of these steps relate the purity of M(.) to showing that all solutions of
certain singular looking stochastic differential equations are strong solutions.

fX
To be precise, set 03C6(y)dy. Then by a generalization of Tanaka’s varia-

tion on It6’s formula : 
(t 

I(1.4) F(X(t)) = M(t) b(X(s)) + 1/2 ~(da), ’

where is the local time of X(.) at a as defined by Meyer in [2J via
Tanaka’s formula. Hence, if T(.) is the inverse of M,M>, then

F(X(T(t))) - B(t) + Jo ~~2 

where B(.) is the Brownian motion appearing in the representation
M(t) = B o M,M>t. But

M,M >t = 11 
and so

rt
T{t) - Jo V / 2 {X(T(S) ) ) 0 

2 
(X(T(s) )_ 

ds.

Thus

T(t)0 
b(X(s)) 03C6(X(s))ds = 

t0 

b 03C3203C6 (X(T(s))ds.
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Setting Y(t) = F(X(T(t))), we now have : :

Y(t) = B(t) + t0 b 03C3203C6 o F-1(Y(s))ds + 1/2 03C6(da).

Finally, if is the local time at b of Y(.), then by the "density of

occupation formula" :

.

Hence,

yet) - ( ) + 11 0 + 2 

Finally, if p is the image of 03C6(da) 03C6(a+) under F and if we define

n(da) = 2014=2014 o F (a)da + 1/2 then we arrive at : :

(1.5) Y(t) = B(t) + Fat ~(da).
Now suppose that we know that every solution of (1.5) is strong

(ie. B(.)-measurable). Then, since

T(t) ° f -520140 
T(.) and therefore M,M>~ . would be B(.)-measurable. But M(t) = B o M,M>t, , and
so we could conclude that M(.) is indeed pure. Thus we are led to the study of
stochastic differential equations of the sort given in (1.5). The key to our
analysis is the following theorem due to S. Nakao [3] : :

Theorem (1.6) : Let (E,B,(Bt),P) be a filtered probability space and let

B(.) be a (~,)-Brownian motion. Suppose that a : : R -)- is a bounded,

uniformly positive function of local bounded variation and let c : : R -~ R be a

bounded measurable function. Then the equation

(1.71 a(t) = t0 a(a(s))dB(s) + t0 c(a(s))ds
admits precisely one (B)-adapted solution and this solution is strong
(ie. B(.)-measurable).

Remark (1.8) : The existence part of Theorem (1.6) was not stated by Nakao,
but it is an easy consequence of exercise (7.3.2) in [5J. Also as Yamada and
Watanabe pointed out, the fact that a(.) is B(.)-measurable is a corollary of
the uniqueness assertion (cf. Corollary 8.1.8 in [5J).

Using Theorem (1.6~ we can now prove a result which will enable us to find
out what we need to know about the solution of equation (1.5).
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Theorem (1.9).’ (E,B, (Bt),P) and B(-) be as in Theorem (1.6).

Suppose that m : R ~ R is a function of local bounded

variation such that m(dx) = + where ~ is a bounded measurable func-

tion and B~ is a function of bounded variation satisfying B)({x})  ~/2,

where B)({x}) = for each Then there is at most one

((6 ) continuous semi-martingale a(’) which satisfies :

~.~~ a(t) = B(t) + !L~ m(da)
where denotes the local time of a(’) at a (we assume, as we may, accor-

ding to [4], that Las^t (oo) is BR  B[0,t] B-measurable for each 

Moreover, if it exists, a(*) is B(’)-mea surab1e.

The idea is to introduce an increasing function H so that Hoa(’) satis-

fies an equation like (~.~. To this end, define

h (x) = [exp(-2~((-co,x)))] J~n (!-2B~({y}))]
yx

where B~ denotes the continuous part of B~. Then h is a bounded, uniformly

positive function of bounded variation and h(dx) = -2h(x-) Next set

H(x) = Jo h(y)dy. Then, by Itô’s generalized formula:
-t 

~ a
H(a(t)) = 

0 
h(a(s)-) da(s) + ½ Lt h(da)

= Jo h(a(s))dB(s) + t0 h03C8(03B1(s))ds

+ Lat h(a-) veda) + ½ Lat h(da)
= t0 h o H (H(a(s))dB(s) + t0 (h03C8) o H (H(a(s)))ds.

Hence, by Theorem (1.6), H o a(’) is uniquely determined and is B(.)-measurable

Q.E.D.

We are at last ready to complete the proof of Theorem (1.2). As we have
already seen, we need only show that every solution to (1.5) is B(.)-measurable.
In view of the preceding, this will be done once we check that the r)(’) appearing
on the right side of (1.5) satisfies the conditions put on m(*) in Theorem (1.9).

Since 2014~- is bounded,this boils down to checking that I-2n({x}) > 0 for each

2n(~) = t~ - = l - ~MLx&#x26;K. nut 

where x = F(y). Hence ! - 2n({x}) = ~~ > 0.
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We therefore know that Y(.) in (1.5) must be B(.)-measurable. The proof of
Theorem (1.2~ is now complete.

Corollary : Let X(.) satisfy (1.1) where 62(.) and b(.) are

measurable functions, b (.) is bounded, and o (’) is locally bounded and
uniformly positive.
Let (~ be a uniformly positive measurable function which satisfies one of the follo-
wing conditions : 

’ ’ ’° ~ °" ’ ’ ’ ’~ ~ ’ ’

a) ~ is a polynomial,

b) ~) is bounded and non-decreasing,

c) (}) is simple (ie. piecewise constant and takes only a finite number of
values).

Then the M (.) given in (1.3~ is pure.

Proof : . The only case which is not obviously covered by Theorem (1.2) is b).

However, in this case, simply take 03BE(dx)=03C6(dx) 03C6(x+) and notice that

~-~03C6(dx) 03C6(x+) ~ (dx) = Log 03C6 {°°) - Log 03C6 (-~)  °°.

Q.E.D.

Remark (1.12): : Of course Theorem (1.2~ and Corollary (1.11) admit generaliza-

tions in various directions. However, they seem to us to cover reasonably well the
situations to which the given techniques apply. The essential characteristic which
all these situations share in common is the non-degeneracy of the function t’(’).
Indeed, as our results indicate, the smoothness of ~(’) does not appear to be of

great importance so long as ~(’) stays away from 0.

This observation forces one to ask to what extent one can handle situations in
which ~(’) is allowed to vanish. We will present in the next section what little
information we have on this subject.

2. QUESTIONS OF PURITY FOR DEGENERATE MARTINGALES :

In this section, we will be looking at martingales of the form :

(2.1) 

where j3(’) is a Brownian motion and § : : R -)- R is locally bounded and measurable.
As a consequence of Corollary we know that M(.) will be pure if ~~ is

bounded, uniformly positive and non-decreasing. We now want to know what can
happen if (})(’) is allowed to vanish.

To see how quickly the situation can change when (~(’) is permitted to vanish,
consider the martingale :

(2.2) M+(t) = 0 1(0,~) (03B2(s))d03B2(s).

Obviously, the only condition which p(e) violates is that p(e) can vanish. As
we now show, this one violation is fatal. In fact, we will show that M+(.) is not

even extremal and therefore certainly is not pure. To see that M+(.) is not
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extremal, let {‘~t : : t > 0} be the completed right-continuous filtration determi-

ned by M+(.). Then, since t0 1(0,~) (S(s)ds = M+,M+>t, 1(0,~) (S(s))ds is

(~)-adapted. Now define a = : t-1 1 (~ ’ ~) (S (s ) ) ds = 0 } and

rt
T = inf{t ~ a : j 1(~ ’ oo) > 0}. Then a and T are finite (~ )-stopping
times. Furthermore, it is easy to check that T cannot be F03C3-measurable
(this can be seen from P(S(a)  0) > 0). Now suppose M+(.) is extremal.

Then we could find an (~)-adapted 8(.) such that

E[
^ 

and e _ T - c + where c = is

F03C4-measurable, we would necessarily have, e = c + But

Epf 03B8(s)dM+(s)))2] = E[F 0

since S(s)  0 for Hence, we would have : : e = c + 
0

Because, T is not F03C3-measurable, this is impossible.

Remark (2.3,) : With a more refined analysis one can prove more about the
structure of (f)-martingales. In fact, one can show that there are purely
discontinuous and certainly none of these could be

dM+(t)-stochastic integrals.
The example M+(.) shows that we cannot afford to drop the positivity condi-

tion on ~(.) when the only regularity hypothesis which we make is that (~(’) is
bounded and non-decreasing.

It is now reasonable to ask what happens if (~(’) is a polynomial which is allowed
to vanish. In particular, which of the martingales

(2.4) Mn(t) = f n > 1, ,

are pure ?

It is embarrassing for us to have to admit that we can only give a partial
answer to this seemingly elementary question. What we will show is that for all
n > 1 M (.) is extremal and that for odd n > ! I it is pure. Whether or not

M2n(.) (even for n = 1) is pure remains an open question. Exactly what is

underlying the distinction between the odd and even cases we are unable to say, but
the next proposition provides a hint.

Proposition (2.5) : If n is even, then the filtrations determined by Mn(’)
and (3(-) are a.s. equal. If n is odd, then the filtrations determined by Mn(.)
and are a.s. equal. For all n > l, Mn(.) is extrenial.

Proo : First suppose that n is even. Since Mn(.) is necessarily f3(’)

measurable, we need only show that 8(.) is a.s. Mn(.)-adapted to conclude that the
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two filtrations are a.s. equal. But M ,M > - and so is a.s.

M (.)-adapted. Hence = t0 201420142014201420142014dM (s) is a.s. M (-)-adapted.

Upon letting ~ ~ 0, we see that 03B2(.) is Mn(.)-measurable. Now that we know that

~(.) and M (.) have the same completed filtrations, it is clear that M~(’) is

extremal. Indeed, since ~(’) is extremal, every square-integrable ~(*)-measurable

random variable X can be represented as

X = E[X] + f 0(s)dp(s),
where 6(’) is 13(.)-adapted and  oo.

Thus, X = E[X] ; 03B8(.)/ n ( . ) 
is and satisfies

E[~0 (03B8(s) 03B2n(s))2dMn,Mn>s] ~.
Since every M ()-measurable random variable is 03B2(.)-measurable we see that

M (.) has the representation property, which is equivalent to extremality.
~ 

If n is odd, then again M ,M > - and so ~(’)! ) is a.s.

On the other hand, .M (.) = j sgn ; and by

Tanaka’s formula :

~(t)~ = sgn ~(s)d~(s) + L~ 0

where 
t L 0 

is the local time at 0 of ~(-). From Tanaka’s formula it is

easy to conclude that if S(t) = ~ sgn ~(s)d~(s), then S(.) is a.s.

° Hence, ’ is also a.s. ~(.~-adapted, and we see that 

and jp(.)t have a.s. the same filtrations. Finally, to show that M~(-) is extremal,

it suffices to show that M (.) and S(.) have a.s. the same filtrations, since

S(.),being a Brownian motion, is extremal and therefore the same argument as we used

above would apply. Hence we only have to check that is a.s. S(.)-adapted.
But 

~(t)~ = 2 ~0 [ ~ + t

and so tp(.)j is a.s. S(e)-adapted by the well-known results of T. Yamada and
S. Watanabe p] .
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We now turn to the proof that is pure when n is odd. The first step

is precisely the same as the first step in the proof of Theorem (1.2) :

= (n+I) + ~~§~~~ ~o ~ 
Thus, if T n(.) is the inverse of Mn> . 

= 0 03B22n(s)ds, if y 03B3n(.) = 03C4n(.))

and Bn.> - MnT.», then Ynt> = n+i>Bnt> + n(n+1) 2t0 03B3n(s)-1ds.
Hence

(2.6) Yfl(t) * 2(n+I) t003B3n(s)dBn(s) + (n+1) (3n+1) 2 t.

Up to this point ve have not used the parity of n.

However, if ve wish to conclude from (2~6) that y~(.) is B (.)-adapted, then ve
n n

~ i/must be able to write y (.) m (y (.)) ~. In other words, ve need to know thatn n

y n (.) - > 0, and obviously this will be the case if and only if n is odd ° Assuming

that n is odd and therefore that y (.) = (y~(.))~~~, ve can apply the previouslyn n

mentioned theorem due to Yamada and Watanabe and therefore show that y~(.) is
n

indeed a.s. B 
n 
(.)-adapted. But this implies that 

n 
(.)) is a.s. B 

n 
(.)-adapted ’

and therefore, since T (t) = $(T (.)),$(T (.))> , T (.) is a.s. (B (.)-adapted.n n n t n n

From here it is clear that 
. 
is a,s. Bn(.)-measurable and so is

M n (.) . B n o d£ n ,M n > . . In other words: :

Proposition (2.7) : M (.) is pure if n 

Remark (2.8) : The argument just given to prove Proposition (2.7) can be used
to prove the purity of certain martingales which come from the so called Bessel
processes. To be precise, let q > I be given and let p(.) be the unique non-
negative solution to :

Pt> . Po + St> +5l t0 i/ps> dS, 
where 03C10~[0,~). Then for any x > i, the martingale "xt> = t0 03C103BB-1(s)d03B2(s) is

pure. The ideas underlying the proof are exactly the same as those presented above.
Furthermore, the same reasoning applies to p(.) defined by

= ~0 ~ ~ ~~
where is the local of at °°
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3. COMPLEX BROWNIAN MOTION :

As mentioned in the introduction, this section deals with a slightly different
topic. For those few readers who have born with us to this point, we are sure that
the change of pace will come as a relief.

Let X(.) and Y(.) be independent I-dimensional Brownian motions starting
from 0 and let (~f.) be the completed filtration determined by (X(’),Y(’)). .
Given z ~ C, set Z(’) = z + X(. ) + iY(’). Z(’) is called a complex Brownian

motion starting from z . Associated with Z(’) is Lévy’s area process

= ) (X(s)dY(s) - Y(s)dX(s))
and the two processes :

03B2(t) = 03B2Z(t) = t0 X(s)dX(s)+Y(s)dY(s) 03C1Z(s)
and

,(,) = ~(,) . J’ 
where

P(t) = = 

Let ((p* ), (~ ), , and (T~~) denote the completed filtrations determined,

respectively, by (~(.), ~(.), y(.), and p(.) ; and let (T~’~) be the

completed filtration determined by (~(’),y(’)). .

Proposition (3.1) : The processes 03B2(.) and y(.) are independent
(J.)-Brownian motions. Furthermore, (F03C1.) = (F03B2.) and (F(03B2,03B3).) = (F03B1.).
Finally, if z = p e i03B8o ~ 0, then

(3.2) Z(t) = P(t) exp + f d03B3(s) 03C1(s)), t ~ 0 ;

and so, in this case, = = 

: Since = 

y,y>t 
= t and = 0, the first assertion is

obvious. To prove that (T~) = (T~~)~ note that

(3.3) P 2 (t) - 03C120 = 2t0 03C1(s)d03B2(s) + 2t.

From (3.3) it is clear that j is (F03C1)-adapted and therefore that
Jo °

p(.) is also. Hence (T~")c((P~). At the same time, (3.3) plus the theorem of

Yamada and Watanabe imply that (F03C1.)~(F03B2.). That is, = 
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To see that (F(03B2,03B3).) = (Fa.), first note that

a(t) = t0 03C1(s)d03B3(s).

Since p(.) is , this proves that . On the other hand : :

03B3(t) = 
t0 da(s) 03C1(s)

and so we will have (F(03B2,03B3).)~(F03B1.) once we have shown that . But

p (s)ds = C~,~> , , and so p(.) is .

ie
Finally, if zo 

= 

po e o ~ 0, then (since P((~ t > 0) = 0) = 0) we can

a.s. . make a unique continuous determination of the phase (ie. . argument) 6(’) of

Z(.) so that e(o) - e Moreover, d03B8(t) = Im(dZ(t) Z(t)) = X(t)dY(t)-Y(t)dX(t) - 
Hence the representation in (3. 2) is proved. Clearly F03B1.) = (F(03B2,03B3).) = (J.)
follows from this plus the preceding considerations.

Q.E.D.

In order to explain what happens to the equality (~i a) _ (~.) when z = 0, ,

we assume that the sample space of ~(.) is and f(t) is the evaluation

at time t. ° For 03B8~[0,203C0), define R : ’ C([b,oo),~) by = 
.

We next define Rt = o (H : : H is a Jt-measurable random variable and H = H o Re
a. s. , for each ~ E C0, 2~) ) .

Theorem (3.4J : If z - 0, then (F03B1Z.) = (R.).

Moreover for each t > 0, m = ) is a uniformly distributed random

variable on S = {z ~  : I z! [ = 1} and m is independent of R~. In particular

each t 

Proof : We first prove that (F03B1.) ~ (R.). To this end, note that p(’) is

obviously (~K/ )-adapted. .

Next, for s > 0 we can a.s. define a unique continuous determination 6 (’) of

arg( ~z(s)) such that 6s(s) = 0. Moreover, just as in the preceding

03B8s (t) = 
ts d03B3(u) 03C1(u), t ~ s.
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Since 6 (t) is clearly Rt-measurable, we now see that 
S 

d03B3(u) 03C1(u) is

and therefore that y(.) is Thus, since

(F03B2.) = (F03C1.), (F03B1.) = (F(03B2,03B3).)~(R.).
We next show that m is uniformly distributed on S and that mt is

independent of S/ . But if H is a bounded R~ -measurable random variable then

for any and 03B8~[0,203C0) :

= H o RQ] = m~ o R~) H o Pj
= H],

where the last equality results from the rotation invariance of the distribution
of ~(.). Hence

= 1 203C0 203C00 f(e-i03B8)d03B8 E[H].
Finally, to prove that ((R.)~(F03B1.), let t > 0 be fixed and note that

- ie(t)
Z~ = p(s) e m~, 0 ~s ~t.

Hence Since F03B1t~Rt and Rt is independent

of o(m ), it follows that 

Remark (3.5) : It follows easily from (3.2) that when 0 we can write

(3.6) Z(t) = p(t) a) ( ds/p"(s))
where a)(’) is independent of p(’) and has the distribution of the Brownian
motion on S starting from z/... The analogue of (3.6) when z 

= 0 is

(3.7) Z(t) = p(t) (0 ( !/p(s)’ ds), t > 0

where o)(’) is independent of p(’) and is the stationary Brownian motion
(defined for all on S such that o)(t) is uniformly distributed for each
t~R. The proof of ~.7~ is not difficult and is left to the reader.

(3.8) : The situation described in Proposition (3.1) and Theorem (3.4)

should be compared to the situation in one-dimension. To be precise, let B(’) be

a one-dimensional Brownian motion starting at 0 and set X(’) = 

x + B(’), where

Then, the analogue of P.-(’) is clearly 03B2X(t) E t0 sgn(X(s))dB(s).
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It is not so clear what should be taken as the analogue of Y2(.). The most
intuitively appealing choice would be a process which counts the’humber of times"

that X(.) passes through 0. But the only candidate for that role is 

(the local time of X(.) at 0) and, since (LO) t_>0 
is already BX(e)-adapted,

nothing new is going to be gained by considering its filtration. Hence, the analogue
of (SH(.), y~(.)) is just SX(.). Since it is well-known that the filtration of

is a.s. equal to that of IX(.)I, , we now see that in one-dimension the analo-
gue of.the second part of Proposition (3.1) fails for all not just for

xo 
= 0. Obviously, the fact which underlies this difference is the inability of a

complex Brownian motion to hit 0 at a positive time.

Before closing this section, we want to reinterpret our results in terms of
stochastic differential equations. To this end, let ~(.), starting at be

given and define Q,(.), S(.), y(.), and p(.) accordingly. Then it is easy to
check that

H(t) = t + iy(s)),

(where we take H(s) ~I~(s) I = 1 if ~(s) = 0). Since we know that

(J.) = (F(03B2,03B3).) when zo ~ 0, we should expect that this equation uniquely
determines 2(e) so long as 0. That is, we expect that 2(e) is the one and

only solution to

(3.9) ~ (t) = Zo + t0 =(-S)- d(s(s) + iy(s»

when 0. We can verify this expectation in various ways. In the first place,
it is easy to check that any solution ~(.) is a complex Brownian motion starting
from zo. Also, using the Picard contraction argument introduced by Ito long ago, it

is easy to see that for each ~ > 0 =(.) is uniquely determined by (3,g) up until
T£ = inf{t > 0 * (,~(t) (  E}. Since Te fi ~ as e ~. 0, ~(.) is unique for all
time. In particular, :î(.) = a.s..

Another approach is the following. Knowing that ~(.) is a complex Brownian motion
starting at 0, we can choose a unique continuous version of Log =(.) so° 

is
that Log ;(o) - Log po + i03B8o, where zo 

= 

po e °. Furthermore,

d Log (t) = d " t) and sod Log (t) = 

;(t) 
and so

= z exp[t0 d~(s) ~(s)]

= zo exp [t0 d(03B2(s)+i03B3(s)) 03C1~(s) ] .
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But using (3. 9), it is easy to derive

03C12~(t) - 03C12o = 2 t0 p_(S) 2t°
~ ° ~o *

Comparing this equation for p_(.) with equation (3.3) and Using the theorem of

Yamada and Watanabe, we conc lude tha t p ( . ) = p__ ( . ) and so

~(t) = zo exp[t0d(03B2s+i03B3(s)) 03C1~(s) ].
Now suppose that z o 

= 0 and that E(.) satisfies (3,9) . Again &#x26;(.) is a

complex Brownian motion starting from 0 and again one can show in the same manner

that 03C1~(.) = p ( . ) and tha t

(3 ° 1 0) ~ " ~ ’ °  S  t °

Hence, if "t = ~(t) Z(t), then = 1 and

s = ~(s) Z(s) = %(i) ’(I) ~(t) Z(t) = "t
since (3.10) holds for any 2£(.) satisfying (3.9) and therefore it holds for £(.)
also. In other words if x(.) satisfies (3, 9) with z o 

= 0, then

(3 , I I ) r( * ) = p * ( . ) ,

where  is a random variable with values on S and  is independent of (F(03B2,03B3).).
Conversely, if %(.) satisfies (3.11) with a p of this sort, then it is easy to

see that Z( .) satisfies (3. 9) .

Theorem 13.12) : Let Z(.) bf,a complex Brownian motion starting from
~~~ ~ ~ ~ = ~Z ~ ~ ’ ~ ~ ~ = ~2 ~ ~ ’ ~ ~ ~ = ~f ~ ~ ’ ~~~ ~ ~ ~ = ~2 ~ ~ ~~

def_ine£ accordingly. Then Z ( . ) satisfies (3 . 9 ) . Moreover, , if X ( . ) I s an solu-

tion of (3 9) then ( .) is a complex Brownian motion starting at z and

Cl=- ( . ) * CL( . ) , S=( . ) * S ( . ) , y=( . ) = y  . > , and 03C1~(.) = p  . ) . In fact, if then

%( .) = 2 ( . ) . Final ly , if z~ 
= 0 , then the set of solutions £( . ) to (3 . 9) is

precisely the set of processes p2( .) where p is a random variable with values

in S and p is independent of %f.
#% : The only assertions which we have not already proved are the

equalities Cl=(.) " a(.) , S_(.) = $(.) , and y_(.) = y(.) . But

d J= d ( S= +I y, )
- =-- 

" - ~ .-...

~ 
P_

and from (3. 9) : 
-

dZ _ .
" P 

°
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Since p-(.) = p(-), , this proves that ~"(.) - B(.) and ~r‘(.) _ y(.).
Finally, dQ = p_ dy, and so C~, ( . ) = G~, _ ( . ) .

Q.E.D.
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Nakao’s paper [3]. The reader may be interested to see how J.M. Harrison and

L.A. Shepp [8J applied Nakao’s result to deal with skew Brownian motion.

2) J. Pitman kindly showed us that the content of Remark (3.5)

is already (in fact, in a more general setting !) in Ito-McKean’s book, p. 276.

REFERENCES :

[1] L. DUBINS, G. SCHWARZ : On extremal martingale distributions.
Proc. 5th. Berkeley Symp. Math. Stat. Prob.,
Univ. California II, part I, 1967, p. 295-299.

[2] P.A. MEYER : Un cours sur les intégrales stochastiques.
Sém. Probas. Strasbourg X, Lect. Notes in
Maths 511, Springer (1976).

[3] S. NAKAO : On the pathwise uniqueness of solutions of
one-dimensional stochastic differential
equations.
Osaka J. Math., 9, 1972, p. 513-518.

[4] C. STRICKER, M. YOR : Calcul stochastique dépendant d’un paramètre.
Zeitschrift für Wahr., 45, 1978, p. 109-134.

[5] D.W. STROOCK, S.R.S. VARADHAN: Multidimensional diffusion processes.
Springer-Verlag Grundlehren Series, Vol. 233,
1979, N.Y.C.

[6] D.W. STROOCK, M. YOR : On extremal solutions of martingale problems.
Ann. Ecole Norm. Sup, 1980, 13, p. 95-164.

[7] S. WATANABE, T. YAMADA : On the uniqueness of solutions of stochastic
differential equations.
J. Math. Kyoto Univ. 11, (1971), p. 155-167.

[8] J.M. HARRISON, L.A. SHEPP : On skew Brownian Motion.
To appear in Annals of Probability.


