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A Local Time Inequality For Martingales

by S.D. Jacka*

M.T. Barlow and M. Yor C1J have established the existence

of universal constants c p ,C p >0 such that, for all continuous

martingales M, with 

c 
p p 

(M) II 
p 

~ C 
p ( ( ~M>~ II p ~ (A)

One is naturally led to consider possible extensions of

these inequalities involving the term sup I and
a t

in this paper we establish the existence of a universal constant

c such that
P

~(M-N>~ - M-N>0)½ ~
p 

~ Cp ~sup sup|Lat (M)-Lat (N) | ~p

for all continuous martingales M and N (Theorem 1).

Conversely, Barlow and Yor have recently established the

inequality:

~sup |Lat (M) -Lat (N) | ~
p

~ Cp ~(M-N)*~~½p~M*~+N*~~½~ {1 v ln(~M*~+N*~~p ~(M-N)*~~p ) }½ (B)
P P p J

We also establish (Theorem 2) the ess sup equality:

ess sup sup I (M) -Lt (N) I = ess sup (M) -La~ (N) I

for each a~IR .

* This research was supported by the SERC
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Let be a filtered probability space satis-

fying the usual conditions. For any random variable f and

any we set 
P 

= and we set

ess For any continuous local Ft-martingale
X and any pE (0,~) we set p = II X>~ ~I p where X>t
is the unique, increasing adapted process such that ~X>,. = X~
and Xt - is a local Ft-martingale,and define HP

= {X : °

We recall the Burkholder-Davis-Gundy inequalities which

state that for each there exist universal constants

cp,Cp>0 such that, for all XEHP

.

where Xt = |Xs| .

Following [5J we define the local time of X by Tanaka’s

formula:

|Xt-a| = |X0-a| + t0+sgn(Xs-a)dXs + Lat(X) ,

we recall that, for each a , L~ (X) is increasing in t ,

[6J, and the support of the measure dL~ is contained in

{t : t Furthermore, since we are working with continuous

local martingales we may take a version of (L (X); 
which is jointly continuous in a and t, [3J.

For any XEHp set X = X-X~. Finally we recall two

definitions : if F : : ~+ -~~+ is an increasing function with

F(0)=0 , F(x)x0 for x~O we say that F is moderate if

there exists an a>l such that

F(03B1x) F(x)  ~
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and that F is slowly increasing if there exists an a>1 such

that

F(03B1x) F(x)  03B1.

Theorem 1 For each p>0 there exists a universal constant cp
such that

cp~ |Lat (M) - Lat(N) | ~p ~ ~ (M-N>~-M-N>0)½ ~p (1)

’ 

for all M and N in HP. .

The proof is obtained via several lemmas.

For define, for each c>0 ; the stopping time

Tc 
= 

where the infimum of the empty set is taken as +~ .

Lemma 2 For M and N in H1

8E[|Lat(M)-Lat(N)|I(03C4 c~)] 
~ cP(03C42c~) (2)

Proof Define

03C3c 
= inf{t~03C4c : |Mt-M03C4c|v|Nt-N03C4c|~½c}

Now, by the continuity of M and N , -NT 
c c

on (03C4c~) , and so Nt does not hit M03C4c and Mt does not

hit NT on the interval therefore
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MT B )
L03C3cc(N) = L03C4 cc(N) 

(3)
LN03C4c03C3(M) = LN 03C4c03C4 (M)

c c

setting

U (a,t) - 

Dt = sup sup 
a st

we see that

4DQ .I(T c ~~) >_ c ,TC) ~ - 

Using (3) we obtain

~~) >_ (L~ MT c (M) - (4)
c c c c c

Applying Tanaka’s formula we see that the right-hand side of

(4) is

-M ~ TC + ~N ~C -N ~ TC -( ~T C 
C

- sgn (N -N ) dNs ( 5 )
S TC

The two stochastic integrals in (5) are martingales in H~ , as

M and N are in H1 , and so, applying the optional sampling
theorem we obtain

4E(D~I(03C4c ~)) ~ E[|M03C3c -M03C4c -N03C4c|] (6)
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Finally, , and on (o °°) , -NT 
c c c c

so, substituting in (6) we obtain (2) D.

The following is a slight adaptation of lemma 1.4 of [4J.

Lemma 3 M 4, lemma 1.4J If X is a positive, right-continuous

adapted process and B is an increasing, previsible process

with X~=B~=0 , such that for all finite stopping times T;

E[XT] ~ E[BT], then for each slowly increasing function F

there exists a constant CF such that

.

Lemma 4 There exists a universal constant K such that for

all M,NEH

(7)
L a t 

t t -~ ~ 0 0

Proof Integrating the inequality (2) with respect to c we

obtain

8E[D~[(M-N)*~-|M0-N0|]] = 8~0E[D~I(03C4c~) ]dc

~ = 

which gives, using Holder’s inequality

KED~ >_ EC((M-N)~ - (8)

(M-N)t - is a positive right-continuous adapted

process whilst D is continuous (and so previsible) as a

consequence of the joint continuity in (a,s) of and (LS (N) . )
Applying (8) to the martingales MT and NT we see that

and KD~ satisfy the conditions of lemma 3 so

setting F(x) = x~ we obtain (7) D.



111

Lemma 5 There exists a universal constant c such that

c E[|Lat(M)-Lat(N)|] ~ E[] (9)

Proof Set

B~ = 

As the ranges of (Mt ; t_v) and (Nt; t_v) are disjoint

for each a , for Thus

D~ - 
a a a a

and so by theorem 3.1 of C1~

c ED~ ? E(M + Nv )

which leads to

4c ED~ >_ 4E ( (M*+N~ ) I (~~~) ) +4E ( (M~+N~) I (V-~) )

? 2E(~MO-NO~I(~~~))+E((M-N)~I ~-~ ) (10)

Adding ( ? ) and ( 10 ) we obtain

- EC ( (M-N)~-) M~-NO I ) I (~_~) + 

+ E ( (M-N) ~I (~_~) )

? 
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We obtain (9) by observing that (M-N) = (M-N) and by applying

the Burkholder-Davis-Gundy inequality with p==l D.

Lemma 6 [4, lemma 1.1] If A and, B are increasing, previsible

processes and there exist a,q>0 such that for all pairs of

finite stopping times ST

then for every moderate function F there exists a c=c(a,q,F)

such that

s c ]

Proof of theorem 1 For M,N~H1 set

We see that

= 

= 

and, applying lemma 5 to these (FS+t)-martingales we obtain,
with some simple manipulation

2EDTI(ST) ~ E[ | (Las(M) - Las(M)) - (Las(N)-Las(N))|]

~ cE[->½T-S]

~ cE[->½T - ->½S]
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So we obtain (1) by lemma 6 with F(x) = To complete the
S

proof in the case p1 , we apply the above inequality to M n
S

and , where Sn = inf{t : ~Mt~~~Nt~>_n} . and then use

monotone convergence to obtain the result. D

Corollary 7 If F is a moderate function there exists a

universal constant CF such that

CF E(F( |Lat(M) - Lat(N)| ) ~ E(F((M-N>~-M-N>0)½))

for all continuous local martingales M and N .

The proof follows immediately from the above.

Remark inequality (B) [Barlow and Yor] leads one to ask whether

there exists a universal c such that

c E[|Lat(M) - Lat(N)|] ~ ~ (M-N)~ 1-~1 ~M*~+N*~~~1

for some e>0 . The answer is no. For, take a brownian motion

B with B~=0 , let T = and take 8>0 ;

setting M = N = B~ we find that

D~ = sup sup I -- and so,
a T_t_T+8 a 

"~ 

by [1] , whilst 2 and >- C03B4½
so that

~(M-N)*~~1-
~1 ~M*~+N*~~ ~1 ED~ 

~ K03B4-½~ 2014> ~ as 03B4~0 .

We now present our second result.

Theorem 8 If M and N are in H1 then for each a~IR ,
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~La~(M) - La~(N)~~ = ~|Lat(M) - Lat(N)|~~

Proof Let n = ess I , and define

a = L~(M) - L~ (N) z r~ + 2 s }

T = L~(M) - n + e }

Since n we see that Consider

I ._ 

t sgn (N (11)

N~H1 so the stochastic integral in (11) is uniformly integrable

so, by the optional sampling theorem

__ 

But on so

o  E~ _~ 0 (12) >

Now

~= 

’- i

so we conclude from (12) that 0 ~ eP (Q°°) . As e is arbitrary

a a 
a.s.

(Lat(M) - Lat (N)) ~ ~

and we may deduce the same inequality with M and N reversed.D
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Corollary 9 If M and N are in hl with then 

if and only if for each a 

Proof The reverse implication is clear. Now suppose 

then, since theorem 1 implies that so that

M=N . Suppose now set (

then, since the ranges of and 

are distinct we may conclude that but

Lv so a~IR and so we conclude that

E ~) -:Q and so for and thus and

M=MO which contradicts the initial assumption. Q
Remark In fact, to conclude that M=N, it is sufficient that

holds for all aErange (M) ; the proof is left to

the reader.
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