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Critical diffusions1

by Edward Nelson

The proper setting for this discussion is a Riemannian manifold, but

I want to avoid complications due to curvature, boundary conditions, and

regularity conditions, so I will work on the flat torus TTn = and

will assume everything to be C .

1. Stochastic Hamilton-Jacobi theory

Let ~: xE -> R and A: xE -> Rn be . We call §

the scalar potential and A the vector potential. Define the corresponding

Lagrangean L: n xRn xR -> R by

L(x,p,t ) = 1 2 p.p-03C6(x,t)+A(x,t).p

where the dot denotes the Euclidean inner product on . The space ’Q’n

may be thought’ of as the configuration space of a system of particles, and

their masses are absorbed into the Euclidean inner product for simplicity

of notation.

By a smooth Markovian diffusion on ~’n , , with diffusion constant fli

and forward drift b , , where b: ~ xE -> Rn is C, , is meant a

 n -valued Markov process ~ such that for all C~ functions

,

Df(~(t),t) _ (~ e+b(~(t),t)’o+ a.)f(~(t)~t) ~ ’
where D is the stochastic forward derivative

> = lim E >
dt -~ o+ 

t dt

(with Et the conditional expectation given ~(t)) . .

lThis work was partially supported by the National Science Foundation,
grant MCS-81001$T7A02.
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For t  tl in R and v a natural number, let sa 
= 

for a = 0,...,v, let ds = (tl-t)/v, let d03BE(s03B1) = 03BE(s03B1+ds03B1)-03BE(s03B1) and

let so03B1 = (s a-1 +s a )/2 . A smooth Markovian diffusion 03BE with diffusion

constant ~h and forward drift b is critical for the Lagrangean L in

case it is indexed by R and for all t  tl in R , whenever

ab: [t, tl] ] --~ Rn is C~ and ~’ is the smooth diffusion indexed

by [t,t-.] ] with diffusion constant  , forward drift b’ = b+Sb , and the

same probability distribution at time t as ~ , then

v 1 d(s) d(s) o 0 0 0
lim 

a=1 a Q[ 
a a a a a a

- E [
1 2 d03BE’(s03B1) ds. d03BE’(s03B1) ds03B1-03C6(03BE’(s o03B1,)s o03B1)ds03B1+A(03BE’(s o03B1),s o03B1).d03BE’(s03B1)]} = o(03B4b).

Notice the order of operations in this definition: first we take the Riemann

sums for the action integral, then we take the expectation, then we take the

variation, and only at the end do we take the limit as the mesh of the

partition tends to 0 .

If  = 0 , this reduces to the usual definition in Hamilton-Jacobi

theory for the flow generated by b to be critical for the Lagrangean L.

In this case it is known that ~ is critical for L if and only if the

Hamilton-Jacobi condition

b+A = VS

holds, where S is Hamilton’s principal function, and consequences of

this are the Hamilton-Jacobi equation

~S ~t+(~S-A).(~S-A)-03C6 = 0

and the Newton equation

a = F
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(see the previous comment about masses), where a is the acceleration

a = ~ and the force is

F = E+H.p

where E = -~03C6- ~A ~t, H is the exterior derivative of A , and

(H.p)i = 03A3 (~Aj i) - ~Ai j)pj .~ 
j 3x 3x~

Theorem I. Let ~i > 0 . Then a smooth Markovian diffusion ~ with

diffusion constant ~ and forward drift b is critical for L if and

only if there is a solution ~ of the Schrodinger equation

1) [~V-A).(~V-A)~

such that

2) b = (Re+Im)6vlog ~-A .

Proof. First let us examine the kinetic contribution to the action.

Let dt > 0 and for any function f of time let df(t) = f(t+dt)-f(t).

Then

t+dt
3) ) = 

~t 
>

where w is the Wiener process on T~ with diffusion constant

(infinitesimal generator ~- A and probability density l). 0 We may estimate

this as but this is not accurate enough if we

wish to estimate

2 dt dt

to o(l) , since is of order . (Notice that d03BE/dt is a quotient,



4

not a derivative.) But apply (3) to itself; i.e., to ~(s) in the integrand.

Then

d03BE(t) = t+dttb(03BE(t)+b(03BE(r),r)dr+w(s)-w(t),s)ds+dw(t) ,

so that

d03BE(t) = b(03BE(t),t)dt + ~ kb(03BE(t),t)Wk + dw(t) + o(dt3/2)

where W- _ [w (s)-w (t)]ds 0 These terms are of order dt , dt 3/2 ,

and dt½ respectively. Therefore

1 2 d~ dt . d~ dt = 1 2 b.b b+ b.dw dt + 1 dt2 ~b ~xk Wk.dw+ 1 2 dw dt dw dt +o(1) .

The term b.dw/dt is of order dt-½ , but Etb.dw = 0 . Now if

t ~ s ~ r , then

so that

Et 1 dt2 ~b ~xk Wk.dw = h 2 Q.b

and Etdw.dw = ndt . Therefore

4) Et 1 2 d03BE dt . d03BE dt = 1 2 b.b+h 2 ~.b+hn 2dt+o(1) .

A smooth diffusion with strict ly positive diffusion constant has a

C~ strictly positive probability density p , since the probability

distribution is a weak and positive (and hence C~ and strictly positive)

solution of the forward Fokker-Planck equation
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~p ~t = h 2 039403C1-~.(bp) .

Then we also have

D~f(~(t),t) _ ( ~~ a )f(~(t),t) 

for any C function f: ~n xE ---~ R , , where D* is the stochastic

backward derivative

D f(~(t),t) = lim E ,

dt -)-o+ 
t dt

and the backward drift b~ is determined by the osmotic equation

- ~2014 
= 

2 Vlog p,

whose left hand is called the osmotic velocity, denoted by u . . The

current velocity v is defined by

b+b,~
V = ~ ’ F

it satisfies the current equation (or equation of continuity)

~ _ a -p.(vp) . .

These assertions are proved in [2,pp. 10~-106].

Now let us examine the vector potential contribution to the action.

We have

+o(ds ) ,
a a a a a a a a a

but

5) EAov = A.v03C1 = A.b03C1-A.u03C1 = A.b03C1-A. 2 ~03C1 = ~.A03C1
= E(A.b+ h 2 0394.A) .



6

Let us define the stochastic forward Lagrangean L : ~ xE --~ R by

L+ = 1 2 b.b+ h 2 ~.b-03C6+A.b+ h 2 ~.A .
By (h) and (5)

EL+(03BE(t),t) = E[1 2 d03BE dt . d03BE dt -03C6(03BE(t),t)+A(03BE(t),t). 03BE(t+dt)- (t-dt) 2dt]- hn 2dt 
+o(1).

We define

I = E L+(03BE(s),s)ds .

Then ~ is critical for L if and only if

I’-I = 

where quantities with ~’ replacing ~ are denoted by ’ . Notice that

the term hn/2dt in (4), which tends to ~ as dt ~ 0 , disappears when

we take the variation.

Let Ex t be the conditional expectation, given ~(t) , for the process

conditioned by ~(t) = x , and define

r’l
S(x,t) = t L+(~(s)~s)ds .

This is the stochastic analogue of Hamilton’s principal function, and we

have DS = L+ .

For the rest of the proof, we follow [I]. In fact, the contribution of

this section is a comment on the work of Guerra and Morato, to the effect

that we do not need to posit any stochastic Lagrangean; we may start with

the usual Lagrangean. Here is the rest of the proof in outline: we have

D(S’-S) = D’S’-DS+(D-D’)S’ = L’+-L+ -03B4b.~S’ = L’+-L+ -03B4b.~S+o(03B4b) .
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Now L’-L - ~ vanish at t ,

and p and p’ are the same at t,

- t1t D(S’-S)ds = ES’(03BE(t),t)-ES(03BE(t),t) = E’S’(03BE’(t),t)-ES(03BE(t),t)
= -I~+I ~

but v) °6bds+o(6b) 0 Now

E ~ V’6b(~(s),s) = j~- (7.6b)p 
and since b-u = v ,

tl
I’-I = E1t ( v+A-VS ) . 6bds+o ( 6b ) .

We may take 6b = v+A-VS. Therefore § is critical for L if and only if

the stochastic Hamilton-Jacobi condition

v+A = VS

holds. Let

R = 2 log p ,

so that VR = u and b = v+u = VS-A+VR . If we write out DS = L we obtain

(~ ~t +b.~+ h 2 0394)S = 1 2 b.b+ h 2 ~.b-03C6+A.B+ h 2 ~.A ,

and expressing everything in terms of R and S we find the stochastic

Hamilton-Jacobi equation

~S ~t + 1 2(~S-A).(~S-A)-03C6+ 1 2 ~R.~R- h 2 0394R = 0 ,

which together with the current equation expressed in terms of R and S ,
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~R ~t +~R.(~S-A)+ h 2 0394S- h 2 ~.A = 0 ,

gives a coupled system on nonlinear equations. But if we let

I 

~=e ,

this system is equivalent to the Schrödinger equation (1). []

A simple computation shows that the stochastic Newton equation

1 2 ( D~,b+Db~, ) - E+Ii . v

holds. The peculiar form 1 (Db+Db) of the stochastic acceleration is
2

no longer an assumption as in [2]; it is a consequence of the variational

principle.

.A change in the choice of the final time tl in the definition of S

produces a guage transformation that leaves the process 03BE and the stochastic

Newton equation unchanged.

2. Zeros of the wave function

If 03BE is a smooth Markovian diffusion that is critical for L , , the

corresponding solution of the Schrödinger equation is nowhere 0 , , by (2).

In this section it will be shown that a diffusion process (not smooth in the

.sense of our definition) is still well-defined by (2) when ~ has zeros.

Let 03C8 be a C~ solution of (1) and let

Z - {(x~t) E ’Q’n I _ E} ~

For E > 0 , the vector field b defined by (2) is C~ on Ze . .

Let E > 0 , , and for 0  s  t let ps(x,s;y,t) be the solution of

the forward Fokker-Planck equation on Z£ with Dirichlet boundary conditions

and initial value dx at time s . . Then pE satisfies the Chapman-Kolmogorov

equation
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) p E (x,s;y,t)p c (y,t;z,r)dy = p c ( x , s ; z , r ) , s  t  r ,

but its integral (in y) is less than I . To remedy this , let

= 5t~ u (m) and define

P (x,s;{~},t ) * 1-p~ (x,s;y,t)dy ;C C

then p is a transition probability. Let x~ be the indicator function
c c

of , and choose an initial measure p° = with
e e c

p°( (m)) = , where p = (§J (~ . (Ve may assume that
e ) c

= l. ) Let Pr~ be the corresponding regular probability measure on

path space

Q = IT lii~
+

and let § (t ) be the evaluation map w ~ w(t ) ; then 03BE is a
c c

n-valued Markov process . The configuration diffuses with drift b until

it hits Z , when it is killed (sent to m) .
c

Let P 
C 

be the probability density . Then p 
e -  p on

n IR , since both are positive solutions of the forward Fokker-Planck

equation on Zc~ with the same initial value and p 
c 

= o on .

The P~ are increasing in y on n as c decreases, Let

~ be their limit , with P ( X , S F ( °~) ,t ) the defect in its integral

will show that this is °) , and let Pr be the corresponding regular

probability measure on Q with initial measure p (o,y)dy . Let

D * lW E Qt wet) ) * °~ for some t in .

Then decreases to Pr(D) .

Theorem 2 . Pr(D) = 0 .

Let °  T  ~ and let DT * (W E Q: wet) ) = m for some t
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in [O,T]} . Then we need only show that decreases to 0 . Through-

out this proof, time parameters are restricted to lie in [O,T] .

Let us set h = 1 , so that |03C8| = eR. Let

X(t) > = R(~£(t),t)-R(~e(0),0) , ,

with the convention that = 0 . By the continuity of paths, DT is

equal Pr~ - a.e. to {inf = log E} , so we need only establish

bounds on Pr {sup ( > a} that are independent of E and tend to 0
s

as a >

Now

X(t) = t0 dR(03BE ~(s),s) = t0 [~R ~s ds+b.~Rds+ 1 2 0394Rds+~R.dw(s)]

where by convention each term in the integrand is 0 after the killing

time. Call the four integrals for a = 1,2,3,4 . Then X~ is a

martingale, so (since VR = u)

Pr~{sup |X4(t)| ( > 2 a T0 u.u03C1~ dt ~ 1 03BB2 T0 u.updt .
Let H (t) = 1 (1 0-A).(1 V-A) . Then a simple computation shows that

o 2 1 i

Thus X~ is OK, by which I mean that Pr {sup (X~(t)~ ( > a} is bounded
e

independently of E by a bound that tends to 0 as 03BB ~ ~ . Clearly,

X- is OK. Now 

Pr {sup |X3(t)| I > 03BB}  1 |1 2 0394R|03C1dt ,

but

|1 2 0394R|03C1 = 1 4 |~.03C1-1~03C1|03C1 = 1 4|-03C1-2~03C1.~03C1+03C1-1039403C1|03C1 ~ u.u03C1+|039403C1| ,
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so X3 is 0K. Finally,

Pr~{sup |X1(t) | > 03BB} ~ 1 03BBT0 |~R ~t|03C1~dt = 1 03BB T0xc~ 1 2 |~p ~t|03C1-103C1~dt

~ 1 03BB1 2 |~03C1 ~t|dt- À 
o 

2 at

so X1 is 0K. The diffusion never reaches the zeros of the wave function.

Department of Mathematics
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