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TWO PARAMETER EXTENSION OF AN OBSERVATION OF POINCARÉ

by

Gregory J. Morrow

and

Martin L. Silverstein

Summary

The infinite dimensional Ornstein-Uhlenbeck process is derived as the weak limit

of processes xn(t,s) constructed from first hitting position of spheres

(e t/2 ) for standard Brownian motion in Rn starting at the origin.

0. Introduction

Poincare (1912) observed that relative to normalized uniform measure on the

sphere Sn 1(,~n) of radius any fixed set of coordinate variables

y1, ..., ym converges in law as n to independent standard normal variables.

(See McKean (1973) for an interesting discussion of this from the "modern" point of

view.) An equivalent statement is that on the unit sphere with the

random process xn(s) , defined by

(0.1) xn(s) = 0 for s = 0y1 + .. . + yk for s = k/n

and linear interpolation otherwise, the finite dimensional distributions converge

to those of one dimensional Brownian motion starting at s = 0 . (In fact it is not

hard to establish weak convergence relative to the usual uniform topology° )

Our main result is that if the processes (0.1) for all spheres 

are normalized by (division by) ~/r and linked up by using the first hitting

positions of n-dimensional Brownian motion starting at the origin and if t = 1/2 log r

is used as the second time parameter, then again there is a limit, the infinite
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dimensional Ornstein-Uhlenbeck process of Malliavin (1976), Stroock (1981),

Williams (1981) and Meyer (1981).

Our convergence result splits naturally into two parts. The first is

Theorem A. The finite dimensional distributions converge to those of the infinite

dimensional OrnsteiUhlenbeck process. .

The proof depends on careful analysis of "Laplace’s method", carried out in

Section 2.

The second part of the result is weak convergence relative to the Skorohod

topology on the set of cadlag function on any bounded interval with values in the

usual space C of continuous functions. This is carefully formulated, stated as

Theorem B and then proved in Section 3. We rely on martingale maximal inequalities

and estimates of and again Laplace’s method plays

an important role. An interesting consequence of our calculations is that

Lim f (h, n) = 0 (h) as h 1 0 but Lim Supn f (h, n) > 0 . This suggests

that the weak convergence result is somewhat delicate.

1. Preliminaries

Bn(u) , u>0 is standard n-dimensional Brownian motion starting at the

origin. For -~ t+~

T (t = inf~u>0 : }

=e- t/2 

component of yn(t) .

It is well known and easy to prove using rotational invariance of Bn , that

the distribution of yn(t) is normalized uniform surface area on the unit sphere

Sn 1(1) . Define x n (t, s) for 0s1 as follows:

(1.1) 

k

xn(t, kin) = 1: y (t, j ) 
j = 1 

_ _
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and for interpolate :

(L 2) x (t, s ) (k+l)/n) . .

The limiting infinite dimensional Ornstein-Uhlenbeck process x(t, s) can be

described as follows. For each t the one parameter process x(t,s) , 0s1 is

standard one dimensional Brownian motion starting at 0 .

If 0=s0s1...sl=1 are fixed then the one parameter processes

x(t,sj) - x(t,sj - 1) -~t~

for j = 1, ... ,l are independent stationary Gaussian diffusions and, in particular,

Markovian. If t2 then the s-increment a t time t2 can be represented

(1.3) =e - (t2 - 

, 
+ ((sj - sj - 1)(1 - e ~t2 tl) )) 1/2 N j

with N a mean 0 variance 1 Gaussian variable independent of all x(t, s) for

J

t tl . . Because of the Markov property in t , this suffices to determine the

finite dimensional distributions of x . In fact x has a version which is

everywhere jointly continuous in t and s.

In Section 2 we will use the Fourier transforms of the finite dimensional

distributions of the xn. The corresponding Fourier transforms for x are

easily calculated using (1.3) and independence of s-increments.

(1.4) E exp{iaj(x(t1,sj) - x(t1,sj - 1)) + ibj(x(t2,sj) - x(t2,sj - 1))}

= exp{-1/2 (sj - sj - 1 ) (a2j  + b2j  + 2ajbje- (t2 - t1)/2 )}.
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in the rest of this section we collect some formulae for integration on

spheres. Good references are the first few pages of chap,ter IX in Vilenkin (1968)

and of chapter I in Muller (1961)o The symbols da(§) or will always

denote normalized (total mass = I ) uniform surface area on Sn-1 (l) . To show

explicit dependence on two coordinates 03BE1 , 03BE2

~~° ~~ ’ 1 ~~~~ ~~l’ ~2’ ~ ~

= Q~~ ( 1/2 , (n - 1)/2 )Q~~ ( 1/2 , (n - 2 )/2 ) /~dx (I - x~ ) ~~ ~ ~ ~~~ /~du (I - u~ ) ~~ ~ ~ ~~~

x d03C3
n - 3 () f (x, 1 - x2 u,1 - x2 1 - u2 ) .

Where  = (§ , o.o , § ) and subscripts n- I and n 3 distinguish d on

Sn - 1(1) and Sn - 3 (l ) . Also Q (p, q ) denotes the Be ta Func tion

03B2(p,q) = 10 dx xp 
- 1

(1 - x)q 
- 1 

= (p - 1)! (q - 1)! / (p + q - 1)!

Ve take for granted the simpler formulae obtained from (1. 5) by integrating out

§ and/or u .

The joint distribtuion of involves the spherical Poisso

kernel (p, 145 in Stein and Weiss (1971)) as follows:

~~’ ~~ ~ ~~ ~~l ~’ Y~ ~~2 ~ ~ ~

"jjdU(§)dU(%)(1 ~~~)(i+r~ - 2r§ ° q>~ ~~~ F§,q>

r=e-’~2 - ~i’/~ . .
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2. Convergence of Finite Dimensional Distributions

In this section we prove Theorem A. From Section 1, this amounts to verifying

convergence of

(2.1) E exp{i

aj(xn(t1,sj) - xn(t1,sj - 1)) + bj(xn(t2,sj) - xn (t2,sj - 1))}

to the right hand side of (1.4).

We begin by replacing the xn increments in (2.1) by uninterpolated ones.

For n suf ficiently large we can choose integers 0 = ia  il  ...  il = n so that

I (ij/n) - sjl  1/n and then define

Wn(ti,j) = 

yn(ti,p) .

To j us ti fy replacement we need only show that M(ti) I converges

to 0 in probability. But this follows from

P(M(ti)>a)~nP(|yn(ti,1)|>a)

= n03B2-1 ( 1/2 , (n - 1 )/2) 2 dx (1 - x2)(n - 3)/2 = 0(n 1/2 (1 - a2)n/2).
a

Here and below we use Stirling’s approximation to estimate

( 2. 2 ) ~ ( 1/2 , (n - k)/2 ) ~ (2nJn) 
1/2 

.

Next we reduce the problem to one coordinate at tl and two at t2 . o The

two sums

ajWn(t1,j) , bjWn(t2,j)

have the same joint distribution as

. 

: , ,. 

. 
(tl~ 1 ) ~ (t2~ 1 ) + (t2~ 2 )

~ ~ v;r
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where

(2.3) An = ( a2j (inj - inj - 1)) 1/2, Bn = (ajbj (inj - inj - 1)) / An

Cn = ( b2j(inj - inj - 1) - B2n)
1/2 

.

Clear ly

(2. 4 ) Bnl ,~ n , , Cn/ ~ n -~ A, B, C

with the latter obtained by replacing in (2.3) each occurence of

inj - inj - 1 by sj - sj - 1 .

All this reduces our problem to showing that

(2. 5) E exp {iAnyn(t1,1) + iBnyn (t2,1) + iCnyn(t2, 2)}

converges to the right side of (1.4).

By (1.5) and {1.6) we can write (2.5) as a 6-fold integral consistent with

the decomposition 03BE = (03BE1,03BE2,) and the corresponding one for o The integrand

depends on § and only through the inner product § This allows us to

-

make  constant, do the corresponding integral and represent {2.5) as the following
5-fold integral:

(20 6)

~ v~

 (1 - z2) (n - 5)/2
(1 + r2 - 2ra - 2rbz)- n/2

where

- {t2 - tl)/2
r=e

~n=(1-r2)p 2(1I2,(n-1)I2)p 2(1/2,(n-2)/2)p 1(1/2,(n-3)/2)
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~_ (1-x2)(n-3)/2(1-y2)(n-3)I2(1-u2)(n-4)/2{1-v2)(n-4)/2

1-y2 uv

b = 1-x2 1-y2 1-u2 1-v2

The parameter z here represents  .  in the notation of (lo 5). The first step

in our asymptotic evaluation of (206) is to restrict the variables. In the rest of

*

this section we fix 1/2  r  1 . Let r > 0 be determined by

1 - r*2 = (1 - r)3.

If any one of ~z~ >r* then

~. (1- z2)(n- S)/2 (1 -r*2)(n- 5)/2 = (1 -r)(3n- 15)12

By two applications of the Cauchy-Schwarz inequality, ~a~ + ~b~  1 and so

(1 + r2 - 2ra - 2rbz)- n/2 
~ (1 - r)-n .

Thus we can restrict the integration in (Z. 6) to , , 

with an error 0(n5~2(1 -r) n/2) and this -~0 as n-~~ . 0 (By Stirling’s

approximation, p 
n 
= p{nS~2) .)

Keeping these restrictions in mind, we apply Laplace’s method to the inner z

integral

*

z ) 2 (n - 5)/2 (1+r - 2 2rz - 2rbz) - n/2 .

- r

An appropriate Lagrangian is

L (z ) = log (1 - z2 ) - log (2r ) - log (Q - a - bz)

where we have introduced an additional notation

Q = (1+r2)l2r .
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The relevant derivatives are

L’(z) = (1 + z)-1 - (1 -z)-1 + b(Q - a - bz)-1

L"(z) = -(1 + z)-2 - (1 - z)-2 + b2(Q - a - bz)-2

L"’(z)=2(1+z) 3-2(1-z) 3+2b3(Q-a-bz) 3 , .

The Euler equation L’ (z) = 0 has unique solution in [-1,1] J

*
z = (Q-a-R)/b

with one more new notation

R = ((Q - a)2 - b2) 1/2 .
We can write

(2.7) z*=Q-(Q2-1)1I2

with o= (Q - a)/b from which it is clear that z * > 0 . To see that z *  r * and
therefore is in the range of the integral, we argue as follows, The inequality
a + b  1 implies

and so 03C3 - 1 = (Q - a - b)/b ~ Q - 1 = (1 - r)2/2r ~ (1 - r)2/2

1 - z* = 03C32 - 1 - (03C3 - 1)

=2 

~ 

In (2. 7) z * decreases to 0 as a increases to +~ . Thus z *  2 - ~ 3 or else

Q 2 and the last estimate yields 1 - z*> ~/2 (1 + ,~’~ ) 1 (1 - r) , For r > 1/2

the first inequality implies the second and so
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(2.8) 1-z*>,~2 (1+,~3 ) 1(1-r)>(1-r)3

* *
whence z  r .

A little algebra including

(2.9) - (1+z) 2 - (1 -z) Z _ _2(1+z2)I (1 -z2)2

Q-a-bz*=R, , 1-z* 2 =2R(Q-a-R)/b~, , 1+ z *2 - 2 (Q - a) (Q - a - R)/b 2
yields

/I 
*2

(2.10) L"(z*)=-2/(1-z )

and in particular

(2.11 ) L" (z* )  -2 o

With the help of (2.8) we conclude that in the range

(2.12 ) 
- 1/2  z  z*+ (1- z*)I2

we can uniformly estimate

(2.13) L‘~’ (z) = 0(1) . o

Le t 0  e  I arbi trary and choose a > 0 such tha t in the range (2.12 ).

For e small, implies (2. 12) and therefore ~L" (z) - L" (z * )~  E . Also

L"(z)-l and so L(z*±a)  L(z*) - a2~2 . Since z* is the only critical point,

L (z ) is increas ing for z  z * and decreas ing for z > z * and so /2

in the entire range z - z ~ > a . All this allows us to expand

L(z) =L(z*)+ L" ( z ) (z - z*)212 with z between z and z and obtain

(2. 14) In = e nL(z*)/2 ~ z * * +a, dz (1 - z ) 2 - 5/2 e n~L" (z*) + e6 (z)} (z - z*)2/4~ 

+ 0 (e nL(z*)I2 - a214) ,
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Convention. Here and below we use 9 and cp to represent guantities which are

undetermined except for the estimate , ~c~~  1 . o They may be constant or

functions depending on the context. Also they vary from one occurrence to

another - although sometimes we use prime (/) to emphasize the difference.

From (2. 14 ) we immedia te ly ge t the preliminary estimate

*

.

z - a

The integral converges to (4n:/n) 
1/2 

and so

(2.15) In = 0(n-1/2enL(z*)/2) .
Evaluating, we get

* *2
(2.16) (1 - z ) * = (Q - a - R)Ib2r . .

2r (Q - a - bz )

We write

(n/203C0)1/2 In = Kne-nL(z*)/2

and we will now show that Kn~K. Note first that J n K = n L = n where, by (2.14)

*

- (1 - (,*~)2) - 5/2~,~ 
1/2 (z -z*}2/4 + 

z -a

Ln = (1 - (z* +03B1)2)-5/2(n/203C0)1/2 z*+03B1z*-03B1dzen{L"(z*) + ~}(z - z*)2/4 + o(l) .
Substituting w = n (z - z*) into both integrals, letting and then e

(and therefore a ) 10 , , we see _ tha t

Kn ~ (1 - z*)-5/22|L"(z*)|-1/2.

Thus (2.6) is asymptotically equivalent to
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(2. 17) (n/203C0)  * * dxdydudv(1 - x2)- 3/2(1 - y2)- 3/2

- r  x, y, u, v  r

1 - y2 v}
n n n

 (1 - z*2)-2 (Q - a - (Q - a)2 - b2 )n/2 / rn/2

where we have used (2. 16) and the relation w = bn and have applied Stirling’s

approximation to p .

Our attention centers now on the expression which is raised to the power

n/2 in (2.17 ). Wri te b =1 - ~ and expand

(2.18) {Q - a - (Q - a)2 - b2 )}/r = (Q - a) / r

- ( Q2 - 1 /r){1 - (2aQ - 203B2 - a2 + 03B22)/(Q2 - 1)} 1/2 .

As above, let 0 E  1 arbitrary and choose a> 0 such that (and therefore

~ia) guarantees validity of the expansion

~1- (2aQ-2~-a2+SZ)/(QZ-1)~ 1/2

- 1 + ( 1 + E 6 ) (Q2 - 1 ) 
1 

(-aQ + ~ + a2 I 2 - ~32 I2 ) .

Also a, can be chosen so that a2  ea and ~2  ea and with E sufficiently small

we can rewrite the expansion as

~1- (2aQ-2~-a2+~2)I(Q2-1)~ 112=1+(Q2-1) 
1 

(-aQ(1+8e)+(i(1+cp~)) . .

Now (2.18) can be expressed

(2.19) 

with two more notations

p=(llr)(1-(1+a8)Q(Q2-1)-1/2)~ q=(1+~P~)r 1(QZ-1) 1/2 .
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(In establishing (2. 19) we have used the relations QZ - 1 = (1 - r‘)/2r and

Q - Q2 - 1 = r . ) Notice that implies since 1 - x2/2 > 1 - x2

> 1 - ~3> 1 -a, . . Of course the same is true for y, , u, , v and so for a sufficiently

small

a = xy + uv - 0 euv

b = 1 - ( 1/2 +cpe)(x~ +y~+u~+v~)

in the region 03B2  03B1 .

The above arguments allow sharp approximation in the region . In order

to "estimate away" the contribution from , we show that

(1-~)2~ 1/2

has a strict maximum at a = 0 , ~i = 0 in the relevant range 0 p  1 and .

First, -1+(Q-a)((Q-a)2- (1-a)2) 1i2>0 since Q>1 and a+b1 . . Thus

F (a, ~3 )  F (~3, p ) . . Also

F(p~a)=-1+(Q-1)(Q2-1-2~)Q-1)) 1/2

=-!+ (Q- 1)(Q~ -2Q+1+ (2 -2{3)(Q - 1)) ’ ~~

=-!+ (1+ (2 -2~)/(Q- 1)) ’ ~0

uniformly s ince ~  1 - (1 - r~2 )2 . . But F (0, 0) = r and so

F(a,P)/r= (Q-a- ((Q-a)~ -b~ ~~)/rl -50 . .

for some 8 > 4 , . Now we proceed as for I and write (2.17) as
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(2.20) (n/203C0)2(1 - r2)
03B2 ~03B1 

dxdydudv (1 - z*2 )-2

 (1 - x2)-3/2 (1 - y2)-3/2(1 - u2)-2(1 - v2)-2 exp (iAnx + iBny + iCn1 - y2 v)

X 

and from now on we can ignore the last (error) term. Finally, we replace

x, , y, , u, , v by x/~n , , y/,~n ~ , , v/,~n , , noting that the set 

contains an open ball about the origin and therefore with the new variables 
will

expand to the full space R~ in the limit ~ The expression (1 - pa - 

trans f orms into

(2.21) 

which converges to

(2.22) exp{- ll2 q( 1/2+cpe)(x2+y2+u2+v2) - 1/2 

=exp~-(1-r2) 1(1/2+cpe)(x2+y2+u2+v2)

+(1-r2) 1((r-e9(1+r2)/(1-r2))(xy+uv+9’euv)} . °

The trans f orm o f 1 - z 
*2 

converge s to

2 2 - 1 (Q - Q2 - 1 ) _ (1 - r2 )r _ 1~ (1 + r2 )12r~

= (1- r2 ) , ,

the trans forms of ( 1- x2 ) (1- y2 ) , tl - u2 ) , (1 - v2 ) converge to 1 and

exp iA x/ n +iB +iC v 1-y2/n /,~n by (2.4).
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Finally, (2.21) is dominated by (2.22) which is integrable for e sufficiently

small, allowing us to pass to the limit under the integral sign in (2.20). Thus

after letting and then e 1 0 , we get

(2.23)

);- 1/2 (1 - r2 ) 1 (x2 + y2 ) - 2rxy + u2 + v2 - zruv) +

a Gaussian integral which is easily computed. Make an orthogonal change of variables

to remove the cross terms :

x = y = (x+z)/~

u = (p -q)/y2* v = 

and rewrite (2.23) as

(2. 24) ~- 1/2 (1 - r2 ) 1~w2 + z2

- r(w2 - z2)+p2+q2 -r(p2 -q2)~ +i(w(A+B)/~ +qC//T)) . ~

The expression inside the exponential can be regrouped

- 1/2 (1+r) 1(w2 - (1+r)(A+B)w- (1+r)2(A+B)2/2)

- 1/4 

- 1/2 (1 - r) 1(z2 - i,~2 (1- r) (B -A)z - (1 - r)2 (B -A)2/2)

- 1/4 

- 1/2 

- 1/2 (1 - r)Cq - (1 - r)2 C2/2)- 1/4 

and then (2.24) is a product of 4 one-dimensional integrals which are easily computed

to give
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1/4 (1+r)(A+B)2- I/4 (1 - r) (B -A)2- 1/4 (1+r)C2- 1/4 (1 -r)CZ}

= exp f 1 /2 (A + B + C ) - rAB}

= exp{ - 1/2  (sj - sj - 1) (a2j + b2j + 2rajbj )} ,

in complete agreement with {l04). Theorem A is now proved.

3. Weak Convergence

Le t C be the collection of continuous functions w on [0~1] ] with w(0)=0 . .

We equip C with the usual uniform norm, denoted making C into a Banach

space. For T>0 let D(T) be the collection of C valued functions cp with

defined for -T t  T and satisfying

Condition D. l. cp(t) is right continuous in C for 0 t 1 ~

Condition D.2. The left hand limits exist in C for 0 t 1 . .

Condition D. 3. c~ is left continuous in C at t = 1 . .

We equip D(T) with a version of the Skorohod topology (see Skorohod (1965)) as

follows. Let A be the collection of strictly increasing homeomorphisms À from

(-T, T] onto itself such that ~~~~I where

~03BB~ = sup | log {03BB(t) - 03BB(u) t - u}| .

t 4 u

(Roughly speaking À belongs to A if ~ (-T) ~ -T, ~ (T) = T,?~ is strictly increasing

and its slope is bounded away from 0 The metric d is defined on D(T)

by

d (cp, ~r ) : _

exists with and .
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We mentioned in Section 1 that the Ornstein-Uhlenbeck process x(t,s) has a

jointly continuous version and so for each T> 0 determines a D{T) valued random

variable. The latter statement can be proved also for the approximating processes

xn, , using properties such as "quasi left-continuity" of the original Brownian

motion in Rn, , even though the xn are certainly not continuous in t. . Of

course it is lack of continity of xn which forces us to deal with D(T) instead

of the simpler space of continuous C-valued functions.

We prove in this section,

Theorem B. For each T > 0 the processes weakly in D (T) . .

Billingsley (1968) proves in Section 14, using the real line R in place of

C , , that D(T) is a complete separable metric space. His arguments extend routinely

to our situation and we take the extension for granted here. Thus Theorem B will

follow from Theorem A if we can establish tightness of the distributions of the xn . .

We also take for granted the following adaption of Theorem 15.5 in Billingsley (1968)

which gives sufficient conditions for tightness. Thus we view Theorem B as proved

once we establish the following two conditions.

Condition T1. For each a,> 0 there exists KC C compact such that

f or all n. .

Condition T2. For each E > 0 there exists h>O and a positive integer n
such that

P( sup ~xn(t , .) - xn(u , .)~ > ~)  ~ for n ~ n0 .

We begin with the easier Condition T.l. Let h>0 be such that h 1 is

integer and consider only n > 4/h . . Choose integers 0 = iD  i 1  ...  i~ = n such

that

~ ’

for j = 0, , ... , l . To simplify the writing below we put s(j) = i./n o Let
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Mn(h) °

If ~v - s ~ h/2 then s and v belong to the same interval [s (j ) , 5 (j + 1)] ] for

some j and so

Mn(h) ~ 3 maxl - 1j = 0maxs(j) ~ s ~ s ( j + 1)|xn(-T,s) - xn(-T,s(j)) |

~ 3 maxl - 1j = 0maxij  k ~ ij + 1|xn(-T,k/n) - xn(-T,s(j))| ,

the second inequality following from the definition by interpolation from integer

multiples of n 1 in Section 1. Let e > 0 arbitrary. For each j , ,

where r~2nh and so

(3.1) 

’

where x I ... , x are the coordinates of a random vector uniformly distributed

on the unit sphere Sn - 1(1) . . Also the partial sums of these coordinates form a

martingale sequence and so by Doob’s submartingale inequality (3.1) is less than

e - 4 E t xl + ... ° 

’

Putting all this together. we get

(3.2) +... e

where ~C = h 1 and r  2 nh . . To estimate the right hand side, , note first that

x +... has the same distribution as , and using the formulae in

Section 1 , ,

~4=r2~ _ 1(1/2, (n-1)/2) f _1 1 (n ~)/2x4 .



413

For n> 6 certainly (n - 3)/2 > n/4 and replacing x by x/ ~ gives an estimate

- 5/2 ~’ ~~ dx(1-x 2 /n) n/4 x 4 =0(r 2 n -2 )=0(n ) , 2 ,rp (l/2~(n-l)/2)n - x =0(rn )=0(n)~

after treating the integral as in Section 2. Thus (3.2) is replaced by

(3. 3) 

for n~n0 depending on h and A>0 independent of h . . Let 03B1>0 arbitrary and

f or a seq uence e m 1 0 choose hm so that Ahm  oc,2 m in (3. 3 ). Since x (-T, s )

is always uniformly continuous in s we can shrink h to accomodate the finite

number of and thus guarantee

(3.4) P(Mn(hm) > ~m) ~ 03B12-m

for all . The set K of w ~ C satisfying for all m the condition

whenever /2 is compact in C by the Arzela-Ascolim m

theorem and (3.4) implies for all n . ~ This establishes

Condition T.1.

Certainly every component of the original process Bn(Tn(t)) is a martingale

and so 

) t u t+h

is a martingale. Taking the maximum over j we conclude that ’

~,e(u t)/2xn(u~.)-xn(t~.)i~ ~ , 
is a submartingale in u and so we can estimate

(3.5) 

.
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for m> 1 . . Using the submartingale property along the lattice in s as above we

estimate the right hand side by the same moment at s = 1 and replace (3.5) by

(3.6) 

A - m 

with A the constant occuring in the submartingale inequality for the mth moment.

All this suggests that the key to verifying Condition T.2 is the right kind of

estimate for -xn(t,1)~m . . Indeed the main result in this section is

that for h>0 sufficiently small

(~, 7) 
,

with m~K> 0 independent of h and for n>n depending on h . ~ We turn now to

the proof of this inequality.

The moment is represented as an integral and then estimated via "Laplace’s

method" as in Section 2, but now we will keep more careful track of the error terms.

Again and ) have the same joint distribution as ,~n 

and ,~n yn(t+h,1) . . Thus

(3.8) 

=p 2( 1/2, (n- 1)l2)(3 1( 112, (n-2)/2)nm/2

where now

- h/2
r =e

p, _ (1 - x ) 2 (n-3)l2 (1 - y ) 2 {n-3)/2 (1 - r ) 2 
~’

a = xy

b = ./! - x~ .
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The restriction to ~x~, ~y~, leaves an error term

2m(1 - r*2) (n - r)/2 (1 - r2)(1 - r)-n

 2m+ 1 ~l - r)nI2 - 6
which can be handled.

We turn our attention now to the inner z integral I defined as in Section 2

but with (1 - z ) 2 (n - 4)l2 in place of (1-z~’~~. . The main point is to get

better control in (2.13). The argument there shows that

L (z ) = log (1 - z2 ) - log 2r - log (Q - a - bz )

*
has a unique maximum z = (Q - a - R)/b with Q and R defined as before. Also

L"(z*)=-21(1-z*2)-2

and in the range (2.12) we have

~L"’(z)~ _ ~z(1+z) 3+2(1 -z) 3+2b3(Q-a -bz) 3~  16+16(1 -z*) 3+2(Q- 1) 3 ,

The function f (w) _ (1 - w2)/2 is concave with f (1) = 0 and f’ (1) _ -1 . Thus

for all w and we can estimate

1-z*>1-r*> (1-r*2)/2= (1-r)3/2 .
More simply,

Q- 1= (1-r)2 /2r > (1-r?)

assuming as we can that r > 1/2 always. Thus for z in the range (2. 12) we can

sharpen (2.13 ) to

(3. g) (z)~  200(1 -r)’~ . 0
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Now let a= (1 - r)9 /200. Then 1z - z ~ a implies (2.12) and therefore (3. 9) and

finally L"(z)~L" (z*) + 1 -1 and so

L(z)L(z*) - (z - z*)2 /2 for |z - z*| a

L (z )  L (z*) - a2/2 f or | z - z*| > a

(since z 

* 
is the only critical point). Then using the estimate (1 - z ) > (I - r )

> (1 - r)3 we obtain finally instead of (2.14),

*

(3.10) In ~ (1 - r) - 8 e nL(z*)/2 { * 
+a 

dze -n(z _ z*)2 /4 +e -n03B12/4}.

The inte g ral is 0 (n 
- ) and n e -n03B12 /4  (2 /a)e 1l2 

and since a 1= 0 ( (1-r ) 9

we can replace (3.10) by

(3.11) In = 0((1- r) - 17 - n 
1l2 e nL(z*)/2 ) . .

using our estimates so far, we get for m> 1

t 3.12) E xn(t,l) (1-r2)x

{ |x| , |y|~r * 
dxdy (x, y ) | x- y |m(1 - r )-1 e

nL(z*) /2 + 0(1 - r )n/2 - 6
n 1/2)}).

Treating the integral in the same way that we treated (2.17), we get for n>n0

depending on r ,

(3.13) 

=0((1-r)-16 
- 1 

+0(n(m+3)/2(1-r)nl2-5) ,
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The integral can be estimated using an appropriate version of (1.3) or it can be

calculated directly with’the orthogonal change of variables

x = 1 (z - w) y = ,~ 2 1 (z +w)
to get

dzdw exp{- 1/2 (1 -r2)-1(z2(1 -r)+w2(1+r))} |w|m2m/2

(1-r) 1w2~ ~w~m2m/2

=~((1 -r)ml2) ~ , 
and substitution into (3.13) gives (3.7).

Because of the exponential factors occurring in (3.6) we need the elementary
result

(3.14) 

a consequence of applying Stirling’s approximation to the exact formula

E~xn(t~l~~~°=~i((m+1)/2, (n- 1)/2)/a(112, (n- 1)/2) . .

Also arguments which are now well known and routine (see Garsia (1973)) allow us

to replace (3. 6) by the corresponding norm inequality (since m> 1 ) which together
with (3.14) implies

(3.15) °

By (3.15)

and by (3.14) for t = t+h , ,
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These two estimates combine with (3. 6) and (3.7) to give

for h sufficiently small. Now Condition T.2 is verified by partitioning the t

axis and arguing as before for the s-axis. Theorem B is now proved.
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