@article{SPS_1986__20__447_0, author = {Le Gall, Jean-Fran\c{c}ois}, title = {Une approche \'el\'ementaire des th\'eor\`emes de d\'ecomposition de {Williams}}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {447--464}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {20}, year = {1986}, mrnumber = {942038}, zbl = {0604.60081}, language = {fr}, url = {http://archive.numdam.org/item/SPS_1986__20__447_0/} }
TY - JOUR AU - Le Gall, Jean-François TI - Une approche élémentaire des théorèmes de décomposition de Williams JO - Séminaire de probabilités de Strasbourg PY - 1986 SP - 447 EP - 464 VL - 20 PB - Springer - Lecture Notes in Mathematics UR - http://archive.numdam.org/item/SPS_1986__20__447_0/ LA - fr ID - SPS_1986__20__447_0 ER -
%0 Journal Article %A Le Gall, Jean-François %T Une approche élémentaire des théorèmes de décomposition de Williams %J Séminaire de probabilités de Strasbourg %D 1986 %P 447-464 %V 20 %I Springer - Lecture Notes in Mathematics %U http://archive.numdam.org/item/SPS_1986__20__447_0/ %G fr %F SPS_1986__20__447_0
Le Gall, Jean-François. Une approche élémentaire des théorèmes de décomposition de Williams. Séminaire de probabilités de Strasbourg, Volume 20 (1986), pp. 447-464. http://archive.numdam.org/item/SPS_1986__20__447_0/
[1] Convergence of probability measures. New-York, Wiley, 1968. | MR | Zbl
:[2] Conditional Brownian motion and the boundary limits of harmonic functions. Bull. Soc. Math. France 85, 431-458 (1957). | Numdam | MR | Zbl
:[3] Branching processes in simple random walk. Proc. Amer. Math. Soc. 51, 270-274 (1975). | MR | Zbl
:[4] Stochastic differential equations and diffusion processes. North Holland Mathematical Library, Kodansha, 1981. | MR | Zbl
and :[5] Diffusion processes and their sample paths. Berlin-Heidelberg- New-York, Springer, 1965. | Zbl
and :[6] Semi-martingales et grossissement d'une filtration. Lect. Notes in Math. 833. Berlin-Heidelberg- New-York, Springer, 1980. | MR | Zbl
:[7] Branching processes with immigration and related limit theorems. Theory Probab. Appl. 16, 36-54 (1971). | MR | Zbl
and :[8] Random walks and a sojourn density process of Brownian motion. Trans. Amer. Math. Soc. 109, 56-86 (1963). | MR | Zbl
:[9] A new class of probability limit theorems. J. Math. Mech. 11, 749-772 (1962). | MR | Zbl
:[10] Sur la mesure de Hausdorff de la courbe brownienne. Sém. Proba. XIX. Lect. Notes in Math. 1123, 297-313. Berlin-Heidelberg, New-York, Springer, 1985. | Numdam | MR | Zbl
:[11] Excursions of a non-singular diffusion. Z. Wahrsch. verw. Gebiete 1, 230-239 (1963). | MR | Zbl
:[12] Arbres et processus de Galton Watson. A paraître aux Annales de l'I.H.P. | Numdam | Zbl
:[13] Communication personnelle.
:[14] One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. Appl. Probab. 7, 511-526 (1975). | MR | Zbl
:[15] Markov functions. Ann. Probab. 9, 573-582 (1981). | MR | Zbl
and :[16] A decomposition of Bessel bridges. Z. Wahrsch. verw. Gebiete 59, 425-457 (1982). | MR | Zbl
and :[17] Sojourn times of diffusion processes Ill. J. Math. 7, 615-630 (1963). | MR | Zbl
:[18] Williams characterization of the Brownian excursion law : proof and applicaitons. Sém. Proba. XV. Lect. Notes in Math. 850, 227-250. Berlin-Heidelberg- New-York, Springer, 1981. | Numdam | MR | Zbl
[19] Brownian local times and branching processes. Sém. Proba. XVIII. Lect. Notes in Math. 1059, 42-55. Berlin-Heidelberg- New-York, Springer, 1984. | Numdam | MR | Zbl
:[20] Bessel processes as a one-parameter family of diffusion processes. Z. Wahrsch. verw. Gebiete 27, 37-46 (1973). | MR | Zbl
and :[21] Downcrossings and the Markov property of local time. Temps locaux. Astérisque 52-53, p. 89-115 (1978).
:[22] Decomposing the Brownian path. Bulll. Amer. Math. Soc. 76, 871-873 (1970). | MR | Zbl
:[23] Path decomposition and continuity of local time for one-dimensional diffusions, I. Proc. London Math. Soc, Ser. 3, 28, 738-768 (1974). | MR | Zbl
:[24] Diffusions, Markov processes and martingales Vol. 1 : Foundations. New-York, Wiley, 1979. | MR | Zbl
: