Temps local et superchamp
Séminaire de probabilités de Strasbourg, Tome 21 (1987), pp. 176-190.
@article{SPS_1987__21__176_0,
     author = {Le Jan, Yves},
     title = {Temps local et superchamp},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {176--190},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {21},
     year = {1987},
     mrnumber = {941982},
     zbl = {0632.60049},
     language = {en},
     url = {http://archive.numdam.org/item/SPS_1987__21__176_0/}
}
TY  - JOUR
AU  - Le Jan, Yves
TI  - Temps local et superchamp
JO  - Séminaire de probabilités de Strasbourg
PY  - 1987
SP  - 176
EP  - 190
VL  - 21
PB  - Springer - Lecture Notes in Mathematics
UR  - http://archive.numdam.org/item/SPS_1987__21__176_0/
LA  - en
ID  - SPS_1987__21__176_0
ER  - 
%0 Journal Article
%A Le Jan, Yves
%T Temps local et superchamp
%J Séminaire de probabilités de Strasbourg
%D 1987
%P 176-190
%V 21
%I Springer - Lecture Notes in Mathematics
%U http://archive.numdam.org/item/SPS_1987__21__176_0/
%G en
%F SPS_1987__21__176_0
Le Jan, Yves. Temps local et superchamp. Séminaire de probabilités de Strasbourg, Tome 21 (1987), pp. 176-190. http://archive.numdam.org/item/SPS_1987__21__176_0/

[B] F.A. Berezin : The method of second quantization. Academic Press, New-York (1966). | MR | Zbl

[F] M. Fukushima : Dirichlet forms and Markov Processes. North Holland 1980. | MR | Zbl

[D] E.B. Dynkin : Gaussian and Non gaussian Random fields associated with Markov processes. J.F.A. 55, 344-376, 1984. | MR | Zbl

[S] P. Sheppard : On the Ray Knight property of local times. J. London Math. Soc. 31, 377-384 (1985). | MR | Zbl

[L] J.M. Luttinger : The asymptotic evaluation of a class of path integrals. Preprint. (non rigoureux. Il constitue cependant une de nos principales sources cf. début du chapitre 4).

[C.K] M. Campanino & A. Klein : A supersymmetric Transfer Matrix and differentiability of the density of states in the one dimensional Anderson model. Preprint. (Les mêmes résultats ont été étudiés par des méthodes utilisant précisément les temps locaux dans) :

[M.S] P. March & A.S. Sznitman : Some connections between excursion theory and the discrete random schrödinger equation with applications to analycity and smoothness properties of the density of states in one dimension. (A paraître).