@article{SPS_1987__21__341_0, author = {Le Gall, Jean-Fran\c{c}ois}, title = {Temps locaux d'intersection et points multiples des processus de {L\'evy}}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {341--374}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {21}, year = {1987}, mrnumber = {941994}, zbl = {0621.60077}, language = {en}, url = {http://archive.numdam.org/item/SPS_1987__21__341_0/} }
TY - JOUR AU - Le Gall, Jean-François TI - Temps locaux d'intersection et points multiples des processus de Lévy JO - Séminaire de probabilités de Strasbourg PY - 1987 SP - 341 EP - 374 VL - 21 PB - Springer - Lecture Notes in Mathematics UR - http://archive.numdam.org/item/SPS_1987__21__341_0/ LA - en ID - SPS_1987__21__341_0 ER -
%0 Journal Article %A Le Gall, Jean-François %T Temps locaux d'intersection et points multiples des processus de Lévy %J Séminaire de probabilités de Strasbourg %D 1987 %P 341-374 %V 21 %I Springer - Lecture Notes in Mathematics %U http://archive.numdam.org/item/SPS_1987__21__341_0/ %G en %F SPS_1987__21__341_0
Le Gall, Jean-François. Temps locaux d'intersection et points multiples des processus de Lévy. Séminaire de probabilités de Strasbourg, Tome 21 (1987), pp. 341-374. http://archive.numdam.org/item/SPS_1987__21__341_0/
[1] Communication personnelle.
[2] Markov processes and potentiàl theory. Academic Press, New-York, 1968. | MR | Zbl
;[3] Some problems on random walk in space. Proc. Second Berkeley Symp. on Math. Statistics and Probability. University of California Press, Berkeley, 1951, p. 353-367. | MR | Zbl
;[4] Additive functionals of several time-reversible Markov processes. J. Funct. Anal. 42 (1981), 64-101. | MR | Zbl
[5] Random fields associated with multiple points of the Brownian motion. J. Funct. Anal. 62 (1985), 397-434. | MR | Zbl
[6] Self-intersection gauge for random walks and for Brownian motion. A paraître dans Ann. Probab. (1987). | MR | Zbl
[7] Potential theory for a family of several Markov processes. A paraître aux Ann. Inst. Henri Poincaré (1987). | Numdam | MR | Zbl
[8] A local time analysis of intersections of Brownian paths in the plane. Ann. Probab. 12 (1984), 86-107. | MR | Zbl
; ;[9] Potential theory of Lévy processes. Proc. London Math. Soc. (3) (1979), 335-352. | MR | Zbl
[10] Multiple points for symmetric Lévy processes. Math. Proc. Cambridge Philos. Soc. 83 (1978), 83-90. | MR | Zbl
.[11] Diffusion processes and their sample paths. Second Printing. Springer - Verlag, Berlin, 1974. | MR | Zbl
;[12] Hitting probabilities of single points for processes with stationary independent increments. Mem. Amer. Math. Soc. 93 (1969). | MR | Zbl
[13] Sur la mesure de Hausdorff de la courbe brownienne. Séminaire de Probabilités XIX. Lect. Notes in Math. 1123. Springer - Verlag, Berlin, 1985, p. 297-313. | Numdam | MR | Zbl
,[14] Sur la saucisse de Wiener et les points multiples du mouvement brownien. Ann. Probab. 14 (1986). | MR | Zbl
[15] Propriétés d'intersection des marches aléatoires, I. Comm. Math. Phys. 104 (1986), 471-507. | MR | Zbl
[16] Le comportement du mouvement brownien entre les deux instants où il passe par un point double. J. Funct. Anal. 70 (1987). | MR | Zbl
[17] The exact Hausdorff measure of Brownian multiple points. A paraître dans le Seminar on Stochastic Processes 1986. Birkhäuser. | Zbl
[18] Fluctuation results for the Wiener sausage. Preprint (1986), soumis à Ann. Probab. | MR | Zbl
[19] Multiple pointsfor Lévy processes. Preprint (1986).
; ;[20] Limit theorems for random walks in the domain of attraction of a stable law. Article en préparation.
;[21] The packing measure of planar Brownian motion. A paraître dans le Seminar on Stochastic Processes 1986. Birkhäuser. | Zbl
;[22] Bases mathématiques du calcul des probabilités. Masson, Paris 1970. | MR | Zbl
[23] Sojourn times and the exact Hausdorff measure of the sample path for planar Brownian motion. Trans. Amer. Math. Soc. 106 (1963),436-444. | MR | Zbl
[24] Functions continuous and sinpular with respect to a Hausdorff measure. Mathematika 8 (1961), 1-31. | MR | Zbl
;[25] A local time approach to the self-intersections of Brownian paths in space. Comm. Math. Phys. 88 (1983), 327-338. | MR | Zbl
[26] Joint continuity of the intersection local times of Markov processes. A paraître dans Ann. Probab. (1987). | MR | Zbl
[27] Continuity and singularity of the intersection local time of stable processes in R2. Preprint (1985). | MR
[28] Some bounds and limiting results for the measure of Wiener sausage of small radius associated to elliptic diffusions. Preprint (1986). | MR
[29] Multiple points for the sample paths of the symmetric stable process. Z. Wahrsch. verw. Gebiete 5 (1966), 247-264. | MR | Zbl
[30] Sample path properties of a transient stable process. J. Math. Mech. 16 (1967), 1229-1246. | MR | Zbl
[31] The measure theory of random fractals. Math. Proc. Cambridge Philos. Soc. 100 (1986), 383-406. | MR | Zbl
[32] Packing measure and its evaluation for a Brownian path. Trans. Amer. Math. Soc. 288 (1985), 679-699. | MR | Zbl
;[33] Path decomposition and continuity of local time for one-dimensional diffusions, I. Proc. London Math. Soc (3) 28 (1974), 738-768. | MR | Zbl
[34] Wiener path intersections and local time. J. Funct. Anal. 30 (1978), 329-340. | MR | Zbl
[35] Précisions sur l'existence et la continuité des temps locaux d'intersection du mouvement brownien dans Rd. Séminaire de Probabilités XX. Lect. Notes in Math. 1204. Springer - Verlag, Berlin, 1986, p. 532-542. | Numdam | MR | Zbl