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Remarks on Absolute Continuity, Contiguity and Convergence

in Variation of Probability Measures*

by

S. W. He J. G. Wang

Let ({In, be measurable spaces with right-continuous filtrations

and Let Pn and be probability measures defined on ~.
From [2]-[4], it is known that Hellinger processes are the main tools for the

study of absolute continuity, contiguity and convergence in variation of probability

measures. In §1, by using the results about the convergence of submartingales at

infinity, we give the Lebesgue’s decomposition between measures. Then the conditions

for absolute continuity and singularity can be deduced immediately. These facts

are easy, but they supplement the known results completely. In §2 and §3, we give

new proofs of the conditions for contiguity and convergence in variation respec-

tively. These proofs start directly from derivative processes, don’t need the deeper

properties of Hellinger processes. Hence, they are straightforward and can be easily

followed. All results are applied to semimartingale cases.

1. Absolute Continuity

l.lPreliminaries. We’ll adopt all denotations of [1] without specification. For

the sake of convenience, we always omit the index n. It appears only in the case,

where it is indispensable.

Set Q = Suppose that F, Q) is a complete probability space, and

under Q F =(F ) satisfies the usual conditions. Let Z and Z be the derivative pro-

cesses of P and P with respect to Q respectively,

Z = ( EQ[dP dQ | Ft]), 2 = ( EQ[d dQ| Ft] ),

Tk = inf ~t : Zt~ Ilk} , Tk = inf{t: Zt 
T = sup Tk = inf{t: Z = T = sup Tk = inf{t: t = 0},
k k 

" -"
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0393 = U [[ 0, Tk]], 0393 = U [[ 0, Tk]],
Sk=Tkk, S = 0393~ = U [[ 0, Sk]] .

Denote by  the jump measure of Z, by Y the compensator of  under Q:

Y = p,Q, Set
03BB = 1 + x/Z_,  = 1 - x/_

,

then ~, ~. E P, and ( see[3])

=~1. ~ -~ v
(Obviously, y = y = 0. )

From now on all discussions proceed under the probability measure Q, unless

otherwise specified. We have

Z = Zc + x*( -03BD),  = c - x*(  - 03BD),
Z+Z=2’ Zc +Zt-2, 

The Hellinger process (with index 1/2) of P and P is

H = 8 (1/Z- +1/Z )2.Zc) + 1 2 (~ - ~ )2 # ~ ( l.l )
and 1(~,8~)c.H = 0.
1.2. Theorem. Set N =~S  o0 or H~= Then .

(1) |P on N,

(2) PNP on Nc.

Proof. We have (see [1])

{Z~ > 0} = { T = ~, 1 Z2_.Zc> + (1 -03BB )2# J (1.2) >

{~ > 0} = { T =~, 12.Zc> + (1 - )2* Va 03BD~ } (1.3 )
Z_ 

)
Since 1 is between ,( l and 

( 1- ~ )2 ~ (~ -~)2~ ( 1 -~)2  (,,~- ) 2
Comparing (1.1) with (1.2) and (1.3), we get.

~S ~°’ H°°c " ~ Z~ > ~~ Z~ ~ C ~ (1.4)
{S  ~ or H~ = ~} = { Z~ = 0 } U {~ = 0 } (1.5)

But = 0) = P(Z ~ = 0) = 0. The conclusions follow from (1.4) and (1.5).
1.3. Corollary. ([2],[3]) P« P iff

( i ) Po c Po’
(it) P( H~ on ) =1~
(iii) P( 1~-C#y~=p)=1
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Proof. Since P« P iff P(N) = 0, but

(N) = ( T ~ or H~ =~)

and

lT 0o) U  H> = > I = I T=0 1 U 1 0T°O, H~r_ °O ) U I H,=.).

Also notice that

I T = 0 1 = 1 z~ = 0 1,

~ ~T~~ ’~ ~ ~ ~~~~~’ ~T~~~ ~ ~ ~ ~~ ~°

Hence

( TI’  > lUi H«= m) = = 0 1 U I ix=o* F. >0 1 U i H,= O* >,

but

? ix=o* F.> ° > 
= ° => ’ iA=o* Foo>=° => ° =>

=> EQ i~ ~* 
= o => 7 ix=o* v,> o > = o,

therefore the Corollary holds.

1.4. Remark. The condition (iii) in Corollary 1.3 is equivalent to 
the following

(iii’) ~A ~ , 1A* p,P~ = 0 a.s. => 1A* p,~ = 0 a.s. .
Proof. (iii) => (iii’). If A ~  and 1A03BB* lj = 1 A* p,P~ = 0 a.s. I, then

1A{03BB>0}*03BD~ = 0 a.s.. By (iii)
1A* p,~ = 1A* 03BD~ = 1A{03BB>0} * 03BD~ = [*(1A{03BB>0}*03BD)]~ = 0 a.s..

 iii ’ > =>  iii > . Obviously, we have 03BB103BB=0*03BD~ = o . By  iii ’ >

103BB=0* 03BD~= 0 a.s. .

103BB=0(Z_03BB+ _)* 03BD~ = 0 a.s.  (1.6)

Since Z K+ Z X= 2 , from (1.6) we get

lx-~ ~ I~V 
" ° ~.

1.5. Corollary. %lP iff

( Zo = 0 or H~ = ~ or 103BB=0* ~> 0 ) = 1.

Proof. It is sufficient to notice that 11P iff f(N) = i and similarly to the

proof of Corollary 1 . 3, we have $(N) = I( or =0 or >O) , hence the

Corollary holds.

1.6. Application to semimartingales. Suppose that Q is a probability 
measures On F
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such that P«Q and P~ Q. (Q is not necessarily Q, but Q«Q. This is the difference
from the assumption in [5].) Suppose X = is a semimartingale under Q (and so

N 
, -under P and P). The predictable characteristics of X under P, P and Q are (B,C,y) , ,

(B,C,v) and (B,C,v) respectively, and
P = f . P , v = f . P 

Set a = (at)’ and a = 

at =y([t]~)~ at =v([t]~)~ 
Define

’C = + * °° )

0~ t = 0~

At = {t - Bt - x1|X|1*(-03BD)t, t  r, T> 0,

+00, t >,’C, Z> 0.

K = dA ’ E P.
(If on [0, t] A is not absolutely continuous with respect to C, Kt = + oo.)

N =iZoZo 
1 -a )2=0o ! U

~ ’~ ~ ~ ~ r N =0 ~X )°° ~ C j 1 U ~ So° ( 14X=0, a=1 or a=1 ) ~ C ~’
where ~IX is the jump measure of X.

Suppose that under Q the derivative processes of P and  with respect to Q
(still denoted by  and Z) have predictablerepresentation:

~)~ y) (1.7)
where L,L E, W,W E P. Applying Theorem 1.2, we have

The conclusion (1) about singularity needn’t the assumption of predictable represen-
tation (1.7). But the conclusion (2) need it in order to represent the Hellinger
process as

H = 1~~~..~~2.C + 1(,r’ 2 -,r )2’~ y + 1 - a - 1 - a )2 .
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2. Contiguity ,

2,1. is contiguous to (Pn), if b An E Fn
0 => Pn(An) -~ 0

and denoted by (P1) 4 (Pn). The main result on contiguity is the following ([2],[3])

2.2. Theorem. (Pn) 4 (Pn) iff

(i) ( o) d (Po)
(ii) lim lim n( Hn~  N ) = 0,

_

(ii1) ~ ’~ >0, Pn( i~ (,N) > ? ) = 0,
where Po is the restriction of Pn (P ) on FQ, and

in(N) =(n1{N03BBnn})* 03BDn, N 2.

The proof of necessity, given in [2], is already very simple, needn’t improving

further. We’ll give another proof for sufficiency. Our proof is based on the

following lemma, as in [3]. But the procedure after that is greatly simpler than

that in [3].

2.3. Lemma. ([3]) (Ph) 4 (Pn) iff

Lim limn( lim (/Z)*Sn  N ) = 0 (2.1)
noo k 

*

(Denote by Z~‘ the supremum process of Z: Zt = 
st

2.4. The proof of sufficiency. From exponential formula, on (~ 0, 

/Z = o/Zo exp{(1/_ ). - 1(1/2_).c> + S(log(1+0394/_) - 0394/_)
- (1/Z_).Z + 1 2(1/Z2_).Zc> - S(log(1 + 0394Z/Z_) - 0394Z/Z_)}

=o/Zo exp{ -(1/Z_ + 1/_).Zc - 1 2(1/2_ - 1/Z2_).Zc> +
+ (-03BB)*( -03BD) + (log- (- 1 ))*  - (log Å - (03BB- 1))* }
=o/Zo exp{ -(1/Z_ + 1/_).Zc, + 1 2(1/Z_ + 1/_)2.Zc>+
+ (-03BB )*( -03BD) + (log 03BB -(-03BB))* }

- Zo/Zo exp{A + B} (2.2)

where Zc, Zc - 1/_.Zc,c> = Zc + 1/_.Zc> is the continuous local martingale

part of Z under P. Set  = 03BB/, = r p’P, and 0  b  1 is a constant. Then

A = -(1/Z- + 1/Z ).Zc’P + 1(1/Z- + 1/Z )2.Zc>
B = (-03BB)*( -03BD) + (log03BB - (-03BB))*

1 N

= 1|03C1-1|>b log 1 03C1 *  + 1 |03C1 -1|>b(03C1 -1)*

(2.3)+ 1|03C1-1|b log 1 03C1 *( -) + (1-03C1))* (2’3)

=B1+B2+B3+B4
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In the sequel, we’ll discuss under P, and estimate (2.2) term by term in order to

get (2.1).

1° since ( 0) d (Po), we have
lim lim n(no/Zno >N) = 0 (2.4)
N->~o 

° °

2o Zc,> = Zc>, and by lenglart’s inequality
P( ((1/Z- + 1/Z ).Zc’P)# ~ N ) L/N2 + P(8H~ >, L )

(A*S  2N)  L/N2 + (8H~  L) + (4H~  N)
k

Let L~~ successively, we get

lim 1 m n( lim (An)5n > 2N) = 0 (2.5)
k .

3° Using for |x| 1, we have

1|
03C1 -1| b log1 03C1 *( - )> 1|03C1 -1| b log203C1*

1|03C1-1| b
(03C1 -1)2*  (1+1+b 1 - b )2(03C1 - 1)2* CbH~ (b_1) ~ 1 - b b

where Cb is a constant, dependent on b only. By Lenglart’s inequality
( (B3)*Sk  N)  L/N2 + P(CbH~ L)

Set k~~, n~~, L~~ successively, we get

lim lim n( lim (Bn,3)*Sn  N) = 0 (2.6)
Noo k~ ao k

4°Using |log(1 + x) -x|  x2/2(1 - |x|) for we have

|B4 | 1|03C1-1|b |-log 03C1 +03C1- 1| *

1|03C1-1|b (03C1- 1)2 2(1-b) * (1+1+b)2 2(1- b) (03C1 - |)2*   CbH

( (B4)*Sk  N)  ( CbH~  N)

Hence

lim lim Pn( lim (Bn’4) n > N) = 0 (2,7)
n~ oo koo Sk

5o 
|B 2|  1|03C1-1|>b |03C1 + 1 03C1 - 1 |(03C1 - 1) 2* 

 
1 

(.~ - 1 ) 2# ~

( 1+ 2/(-1 +1 + b))(03C1 - 1)2 * CbH (2.8)

( (B2)*Sk  N )  ( CbH~  N )
Hence
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?"( lim (B"’~)*n ~ N ) = 0 (2.9)
k->e« k

6° Take 0  o’  1 - b

~~4~i-b~~’?~~~~
~( (e~ )~N ) ~((1~~~ ~) ~((l~,~)s~0) (2.10)
~l-b)~ ~ ’’{.f-.~b}~ 

By Lenglart’s inequality

~~l-b*~S, ~~~ ~  ’’ ~’~ ~ V~ L ) (2.11)

On the other hand,

103C103B4*  1K03BB* + 10K03BB,03C103B4*
~W+~X>o.~~~
~ i(K) 

~i(K)+2K~/(l-~)~H (2.12)

Notice that H is integer-valued, again by Lenglart’s inequality

~(I~~B>0)=~~~S,~
~ +P( (~~~)s~?) ~-~

From (2.10) - (2.13) we get

((eB1)*Sk  N )  L log1 03B4/logN + (CbH~ L) + ~ + (i~(K) 
> 1 2~)

~ 

+?(H~~"(1-~~/4K~) )
get , , ~0, K-~~,~0 successively, we get

lim lim ~( lim (e~)*n ~ N ) = 0 (2.14)
k

then (2.1) follows from (2.2) - (2.7),(2.9) and (2.14). .

2.5. Remark. In Theorem 2.2 the condition (iii) can be substituted by

( i ii ’ ) 

~0 0 -> ~0 0 

Proof. (iii) => (iii’ )

~ ~~ ~ lN~"~~ " A~~~~*~
~i~W+Nl~n~"*~ ~ .

(iii’)-(-(ii)=>(iii). .
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1N03BBn 03BBn03BBn*03BDn~  (N - 1)-2 Hn~ ,

Hence f or each sequence Nn -> ~, take An ={Nn03BBn
n }, we have in~ (N n )~0 in (n),

therefore (iii) holds.

2.6. Application to semimartingales. We make the assumptions, as in 1.6. Applying

Theorem 2.2, we have the conclusion (see [5~):

(Pn) Q {Pn) iff

(i) (Po) ~ 
{ii) lim lim + (,,rn-.,~)2#Y~ + S ( 1 -a - ,~1 -an)2 >, N) _ ~,

(iii) dZ>0, 

lim lim n(1N03C1nn * n~ + S~((1 - ãn)1N(1-an)1-ãn)  ~) = 0.
In fact, we have

i(N) = 10393n.{ 1N03C1 * + S((1 - ã)1N(1-a)(1-ã) )}.
Sinalar to Remark 2.5, (iii) can be substituted by folloving

(iii’) {a) d An E pn
1An* 03BDn~ ~ 0 in (n) => 1An * n~ ~ 0 in (n),

{b) E Pn
))~-~ 0 in (Pn)

_> (IAn.S((1 - 0 in{Pn).

3. Convergence in Variation

3.1. Lemma. The following statements are equivalent:

(1) ~Pn - n~ -> 0.

(2) (Zn - 1)*~ -> 0 in (Pn).

{3) (Y - 1)~ -> 0 in(Pn), where Yn .

Proof. Since Pn ~ = EQ| Zn~ - n~| =2EQ|Zn~ - 1 |, |Zn~ - 1| 1, so
~Pn -n ~ -> 0 => |Zn~ -1|-> 0 in (Qn).

{1) _> {2) By inequality of martingales, for ~>0

Qn ( ( Zn - 1)*~  6 ) 1 ~ EQn|Zn~ - 1|
Hence, (Zn - 1)*~ -> 0 in (Qn) and {Pn).
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(2) _> {1). Obviously, Zn~ - 1 -> 0 in (Pn). For given ~ > 0, and 

Qn(|Zn~ - 1|~)  |Zn~ - 1|03B41/Zn~ dPn  1/(1+03B4) Pn(|Zn~ - 1|03B4)
Set 03B4->0 successively, we get ->0 in (Qn).

Note that 1 -(Yn)Z - (1 -Zn)2 and 0  Yn ~~ 1, we have

(1 -Yn)#  ( 1 - Zn)#2  2(1 - Yn)~ ,
(2) _> (3) follows.

3.2 Theorem([4]). The following statements are equivalent:

(1) ~Pn - n~ ~ 0.

{ 2 ) (a) ~~Po - Po ~~ --~ 0,
{b) H ~ - 1 (Qn).

(3) {a) ~~~ - -~ D~

(b) H ~ - 1 -~ 0 in(Pn).

Proof. (1) _> (2). (a) is trivial. Suppose that the Doob-Meyer decomposition

of Yn is

Yn + M" - An (3.1)
0

where Mn is a martingale with An = Yn.Hn. By Lemma 3.1, (Yn - -> 0 in

(Qn). An is dominated by (Yn - Yn)#. 0394(Yn - Yno)*  |0394Yn|  1. By Lenglart’s inequa-

lity, we have An~ ~ 0 in (Qn). On {inf Ynt 1 2},

H n 00 - (1/Y- n- 1).A ~ n + An +An

On {inf Yt  1 2}, (Yn - 1)*~  . Theref ore, 0

Qn(Hn~  ~) Qn((Yn - 1)*~  ) + Qn((2(Yn - 1)*~ + 1)A*~  ~)

Hence, Hn~ ~ 0 in (Qn). (2) => (3) is trivial.

(3) _> (1). At first, observe that

2H~ >, { ~ -,r )2~’ ~~ >, J1( ~/~, - 1 )2 ~~ ~
’ 

>, A( 1/N - 1)2 lNl~~-# ~°°
Hence, 1 NNn~~n ,~n~’ y~ -$- 0 in (Pn). Applying Theorem 2.2, we have

~D~. BA. / ’~’

Q (P~). Since  ~ )  1/k.  1/k,

lim lim = 0 {3.2)
n~ o~ 

Now def ine L =1/Y . Y = 1/Y .M - H. Using Ito’ s formula, on ~ we get
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(1/Y-).M = + {1/Z ).Z) - ~’{,(~-,r)2#((~-!~)
= ~(1/Z- - + 1)#( - ~ p’P) +
+ ~(1/Z_ - 1/Z )(1/Z ).Zc> + ( ~,- 1)(,I A - 1)# V {3.3)

where is the continuous local martingale part of Z under P. It is easy to see,

on [ 0 , , ,

~(1/Z- - 1/Z ) 1/Z-~.Zc>  (1/Z- + 8H (3.4)

I

~(~,- 1)(~~~ - i) ~ ~ (,C + 1)~,r - 1 -,~~  (,~ + 1)(~ -~ )2
i(~l- {,(~+ 1)(,~-~)2#!~ + 1)H (3.5)

Under P we have

~(i/z, - + ( ~ J~J~r- 1)#( - ~t p’P)> 
~ + 1/Z )2.Zc> + (2k+ 1)(,~ -~~ )2# y  (2 ~ 4k)H (3.6)

From (3.3) -(3.6) and Lenglart’s inequality, we obtain

(Ln)*Snk ~ 0 in (Pn) (3.7)

By exponential formula, on 

y=y o = Y 0 exp {L + S(log(l 
Note that for and ~L 1 we have

0  (0394L - log(1 + 0394L))  (0394L)2

~ 1)2’~ (,r- 
Since (,r -,(x)2# I up’P ~ 2(1+2k)H, using Lenglart’s inequality again, we obtain

(S((0394Ln - log(1 + 0394Ln)) 1|0394Ln|)Snk ~ 0 in(Pn) (3.8)

 ~>0,

{(S( |log(1 + 0394L) - 0394L|))
Sk 
 ~} ~

~{(0394L)*Sk > }U{(S((0394L - log(1 + 0394L))1|0394L|))Sk~} (3.9)

According to (3.7), , -~ 0 in (Pn)~ ’ and from (3.8), ’ (3.9) we get

(S(/1og(1 + Ln) - .-~ 0 in { Pn ) (3.10)

By (i), yn - 1 -,~0 in (Pn), , now

1 = yn - 1 + + S ( log ( 1 + Q Ln ) - ~ ~n J) -’ ~
and from (3.10) we have
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n ~fE n(Yn - 1)*Sn ~ 0 in (Pn) (3.11)
k

For given f > 0,

Pn((Yn - 1)*~  ~)  Pn(SnK  ~) + Pn((Yn - 1)*Snk  ~)
Set and successively, from (3.I1) and (3.Z) we know

(Yn - 1)~ -~ 0 in (Pn)
At last, (j Pn - 0 f ollows f rom Lemma 3.1.
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