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INTEGRATION BY PARTS FOR JUMP PROCESSES

by J.R. Norris

We give a simple derivation of the integration by parts formula used by Bismut [4],
Bichteler, Gravereaux and Jacod [3], Leandre [7, 8] and Bass and Cranston [1] in the

study of jump processes. This is done in the same spirit as Bismut [5], starting in a situa-
tion with only finitely many jumps and then taking limits. The framework within which
we work is the theory of stochastic integrals and stochastic differential equations (SDEs)
based on a Poisson random measure (see Jacod [6], Bichteler and Jacod [2]). We restrict

to autonomous SDEs and thus to Markov processes. § 1 is directed towards establishing
Theorem 1.2, which asserts the validity of the integration by parts formula for solutions of
a class of graded SDEs, examples of which arise naturally in §2. The development fol-
lows closely [12], § 1.

In §2 we show how iterations of the formula can lead to regularity properties of the
transition kernel of the process. For example, in Theorem 2.10, sufficient conditions are

given on the coefficients of the SDE defining the process to ensure there is a smooth tran-
sition density satisfying

|D03B1ypt(x,y)| ~ C t-03B3(n+d+1)(1+|x|03B2) (1+|y|x) (0.1)

for I a I = n, t > 0, x, y E Rd. The method is essentially the same as in [3], as is the
nature of the results, but there are a few novel twists. Motivated by Léandre [9], Theorem
2.6 shows that it is possible to localize the main non-degeneracy hypothesis to a neigh-
bourhood of the starting point. Lemma 2.2 which underlies this localization may be of
independent interest. Theorem 2.7, taking up an idea of Bass and Cranston [1], gives con-
ditions implying (0.1) which hold even when the flow of the defining SDE is degenerate.
Theorem 2.8, by using Bismut’s trick [4] involving doing each integration by parts on a
separate interval, weakens some of the hypotheses for (0.1). These three theorems and
their implications for the transition kernel are summarized in 2.f. Theorem 2.9 states con-
ditions for regularity of the transition kernel in the backward variable. In 2.h, indepen-
dently of the main development of §2, we recover for a specific example conditions for
the existence of a resolvent density, due to Bass and Cranston.
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§ 1. Integration by parts

The SDE in Rd

t t

xr = xo + + Y(xs-~ Y) ~)
0 OE

provides a machine which takes a Poisson random measure  on E x [0,~), and pro-
duces a Markov process xr , starting from x o , with generator

G.f (x ) = + + Y(x,y» - f(x) - 
. E

Here v is the compensator of ~, and v(dy,dt) = G (dy)dr . We will use this machine,
written from now on as

dxt = X (Xt-)dt + Y (Xt-, y) (~-v) (dy,dr) ,

to deduce from simple properties of  an integration by parts formula for functions of
the process Xt (Theorem 1.2).

Integration by parts requires a differential structure to be imposed on at least some

part of E . We in fact assume that E = ~td1 t 0 ) , that G is a Radon measure on E and
that there is an open set E’ ~ E and a function g e C 1 (E’) with

G(dy) = g (y)dy and g > 0 on E’. (1.1)
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l.a Derivation of the formula

We assume for now

(i) X, Y(. , y) are C~ , , Y(x , .) is C1 on E’ j

X (x) , DX (x ), Y (x,y ), D1Y (x,y ) are uniformly bounded, and

D 2Y (x,y ) is bounded on Rd x K’ for each compact E’ ; ;
(1.2)

(ii) supp Y  R~ x K for some compact E . .

These conditions ensure, in particular, that Xl has only finitely many jumps in any inter-
val 0  t S T and is between jumps just the solution of a first order ODE.

The integration by parts formula will concern a previsible function v(t,y ) with

values in called the perturbation. Choices of this function in relation to the process
xr will be made in §2. We assume for now

(i) v(t,. ) is C 1 for each 0  t v and D 2v are uniformly bounded;
(1.3)

(ii) supp v(. , .) ~ for some compact K’ c_ E’ . .

These conditions ensure, in particular, that, for sufficiently small heR,

y I --~ --- y + v(t,y ).h defines a diffeomorphism of E , leaving all but K’ fixed.

(1.2) and (1.3) permit an easy derivation of the integration by parts formula. In l.b
we use approximations to show it remains valid under weaker conditions.

Define a perturbed random measure by
t t

.

OE OE

If  has an atom at (y,t) , has one at : we have moved the places at which

 jumps. Set

03BBh (t,y) = det D
203B8h (t,y).g(03B8h(t,y)) g(y)
, y ~ K’,1 , y ~ K’ ,
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and set

t t

Z? = exp log ~h (S~y ) (~h (s~y ) -1 ) ~ ( 1.4)
OE OE

then

~h = Zr (~h(t~y)-1) ,

so Zh is a martingale and we may define a new probability measure ph by

dIPh dIP = Zht on Ft .

’ We will show that, with the weighting Z~, ~h has the original law of Il. . It suffices to

check for test functions ~ and for

, t

Ui = exp {j j ~(S~y) Zt .

OE 
’

that does not depend on h . . We have

dUt = d (mart) + 1 } v(dy,dt)

so

t

1 + 1 } ds
o E’

t

= 1 
0 E’

by the Jacobian formula in Rd, which determines uniquely, showing in particu-
lar independence of h . .

Consider the perturbed process xr defined by

dxht = X(xht-)dt + Y(xht-,y)( h-03BD)(dy,dt)

(1.5)x0 = x ~ Rd.

In replacing  by h we have altered the size of the jumps of xt whilst preserving the
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times at which they occur. Since xj is the same measurable function of for all h ,

the law of jc~ under IP~ does not depend on h and we have, for all test functions /,

~-E[/(~)Z~] = 0. (L6)

Elementary results on the differentiability of an ODE in its starting point may be applied

jump by jump to show that xj is a.s. differentiable in h and indeed Dxt ~ ~ ~h|h=0 xht

satisfies the SDE obtained by differentiating (1.5) formally:

d Dxt = DX(xt-)Dxt-dt + D1Y(xi-,y)Dxt-( -03BD)(dy,dt)

+ 

Dxo = 0 e R~.

We may differentiate (1.4) to obtain

.

Finally, given that the jump times of )l restricted to K occur as a Poisson process of

finite rate, it is not hard to justify differentiation of (1.6) under the expectation sign to
obtain

+ = 0. . (1.7)

l.b Extension of the formula

To obtain a useful result we set up a framework of conditions on X, Y and v ,

weaker than (1.2), (1.3) under which the integration by parts formula remains valid. First

we define classes of graded coefficients X and Y (which include all C~ Lipschitz
coefficients) and note a result on the associated SDEs.

Definition of ~(di,...,~)

denotes the set of measurable functions 

(~ = ~i + ... + ~) having a decomposition

] /~ B
~(jc) = X~(.~ ...,~) for x = ~ °k ~ 1. .. xk

X(k)(x1, ..., xk)
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such that

(i) is C 1 in xJ e R’ (j = 1, ..., k) ,

(ii) I IX II 
... 

- 

sup ) a I v sup ID ( x ) I )  00.
For a function p : E ~ (o, ~) , C~ (d 1, ..., p) denotes the set of measurable

functions Y x E -~ ~d satisfying

(i) Y (. , y ) e Ca (d 1, ..., dk) for each y e E ,

II Y II d ... ~ p) = -1- IIY . ( ~ y) II ~(d1, ..., ~k)  ~, °

Notice that Ca,(d 1, ..., dk) and ..., dk; p) increase with a and p . . Any:
SDE which may be written in the form

dxr - X{xr_) dt + Y(xr_,y) (~-v) (dy,dt)
with X e Ca (d 1, ..., dk ) and Y e Ca(d 1, ..., dk; p) will be called a Ca(d 1, ..., dk; p)-
system, or simply a graded system.

Lemma 1.1

For 0 S a , d 1, ..., dk >_ 1 and p e 
2 
n 

 
LP(G), , every ..., dk; p)-

system has a unique solution xt . For all 0 - t 2 -p there exist constants C and

~i depending only on p, t, a, d 1, ..., dk , I I p I I 2 + I I p I I d p , IIX I I I Y I such that

||sup|xs| ||Lp(IP) ~ C(| + |x0|03B2).

Proof. By induction on k , using (for example) Bichteler and Jacod [2], Theorem A.6
for k =1 and the inductive step. (The proof works because, whilst X and Y are not
Lipschitz, XU) and Y~? are Lipschitz in x~ and one can show inductively that

sup I (xt , ..., I e Lp {1P) .) ~t 4

Recall that G is a Radon measure on E = E’ is an open subset of E ,

g e C 1 (E’ ) and we assume ( 1.1 ), that is G(dy) = g(y)dy and g > 0 on E’ .
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Theorem 1.2 (Integration by parts formula)
Let X e Ca (d 1, ..., dk ) and Y e 1, ..., dk; p ) , for some 0 S a  ~ ,

d 1 + ... ~ + dk = d , and some continuous, strictly positive p e 
2 Sp f1  Lp (G ) . Let xr

be the unique solution of the graded system

dxt = X (xt_) dt + 1
xc - x e Rd. L (1.8 )

Suppose X and Y (. , y ) are C 1 with

(i) IDX(x) I S C(I + 

1(ii) I S (1 + ~ (1.9)

and suppose Y (x , .) is C1 on E’ . .

Let v(t,y) be a previsible function, vanishing off E’ , with values in satisfy-
ing

(i) ID v(t,y) I _ A (t) (1 + I x I °‘)p(y)2
(ii) Iv(t,y)I I  A (t) dist (y, (1.10)
(iii) v(t, . ) is CIon E’ with A (t)g (y ) P (y ) , 

for some increasing previsible process A (t) e n Lp(1p) .

Then

(a) The SDE

d Dxr = DX (xr_)Dxt_ dt + D (dy,dt)

+ D2Y(xt_,y) v(t,y) p.(dy,dt) (l.ll)

Dxo = 0 e Rd 

has a unique solution Dxi e n Lp (IP) , for 0 S t .



278

(b) The stochastic integral

Rt = 
div (g.v)(s,y) g(y) ( -03BD)(dy,ds) ( 1.12)

is well defined and Rt ~ n LP (P) for 0 _ t .

(c) For all test functions f , and all 0 _ t 
’

IE [Df (xr) Dxt] + IE[f (xr) Rt] = 0 . (1.13)

Proof. (a) The graded structure Qf X, Y permits an inductive proof, for j = 1, ..., k ,

that the -component Dxt is well defined and lies in n LP (1P) .

(b) See for example Bichteler and Jacod [2], Lemma (A.14). , ,

Before proving (c) we state for reference a general criterion for convergence in

Lp (1P) of xt (n ) to xt, where xx is the solution of

dxt = X (xt_) dt + Y(xt_,y) (~-v) 

x p = x E ~d 

and xr(n) the solution of an approximating SDE with coefficients Xn, Yn and

xo(n) = x . . Here, we allow all coefficients an implicit previsible dependence on t~ and

t . . Fix 0 _ T . Suppose

(i) The approximating coefficients are C 1, Lipschitz, uniformly in n :

I DXn(x) I _ C , , ID 1Yn(x,y) I - p~y)

for all n , for some 0 S C  ~, , 03C1 ~ ~ 
 

Lp(G) ;

(ii) they converge in LP (IP) for some p >_ 2 :
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IE[sup |{X(xz-) - Xn(xz-)}ds|p] ~ 0,

IE [sup |{Y(xs-,y) - Yn(xs-,y)} ( -03BD)(dy,ds)|p] ~ 0,

Then IE[sup |xt - xt(n)|p] ~ 0 as n ~ ~.

(c) Consider the conditions

(i) and are uniformly bounded; 
(ii) supp F c R~ x A" and supp v c [0,oe) x ~’ for some compacts ~ c ~

; ~ ~~ ~

are uniformly bounded, and

~2~(~y) is bounded on R~ x Ar’ for all compacts ~’ c B’. .

These certainly imply (1.2), (1.3) and thus the validity of the integration by parts formula
(1.13). We complete the proof in three steps, showing in turn that, under the hypotheses
of the theorem, each of the above conditions may be dispensed with. In each step approx-
imating sequences and corresponding to approximations to ~, K
and v for which (1.13) is known to hold, are shown to converge in to xt, Dxt
and Rt which thus also satisfy (1.13). In the first two steps it will be clear by (1.14)(iii)
that the approximating coefficients are C ~ Lipschitz uniformly in M, so we have only to
check part (ii) of our convergence criterion.

Step !. Suppose (1.14)(ii), (iii) hold. By (1.14)(ii) the sets

Bn ~ {t~0:|v(t,y)|, |D2v(t,y) | ~ n for all y ~ E}

increase to [0,..) as ~.o. Set =v(f,y)lB.(t) then v~ sadsnes(1.14)(i).
Write ~ = To obtain the desired convergence of and it
suffices that, as M 2014~ oo,

E (v - v,,) (r,v) 



280

~ IE[(A(s)(1 + |xs-)|03B1)03C1(y)21B(s) (dy,ds))2] ~ 0

and

IE[|Rt-Rt(n)|2 = IE [| div(g.(v-vn)) (s,y ) g(y) ( -03BD)(dy,ds)|2 ]

~

~ E n~(~P(y)~~(~)G(dy)~ ~ -~ 0. .

Step H. Suppose (1.14)(iii) holds. Set

E~={~-ty)~}
~

and

and )y!~).
~

By (1.10)(ii) there exists a sequence (~) in C~(E) with and

)D~(y), v(r,y) > ) 1 for all ~. Choose also a sequence in

lE,,. . Observe that 

satisfy (1.14)(ii) (with ~=~3~, ~==E~. . Tb obtain the desired convergence of

xt(n), Dxt(n), Rt(n) it suffices that, as n -> oo, ,

IE [sup|(Y-Yn)(xy-,y)( -03BD)(dy,dr)| 2]

~ IE [ sup sup |
Y(xs-,y)|2 ]t.(1-03C8n(y))203C1(y)2G(dy) ~ 0,~ J ~

IE sup
|

D 1 (Y - Yn) (xr-,y ) Dxr-( - 03BD) (dy,dr )|2



281

~ IE [sup sup|D1Y(s-,y)Dxs- 03C1(y)|2]t.(1-03C8n(y))203C1(y)2G(dy) ~ 0,
IE[sup|(D2Y(xr-,y)03BD(r,y) - D2Yn(xr-,y)03BDn(r,y)) (dy,dr)| 2]

~ IE[(A(s)(1 + |xs-|03B1)(1-03C6n(y))03C1(y2) (dy,ds))2 ] ~ 0,
IE[|Kt - Rt(n)|2 = IE[ ((1 - 03C6n(y))div(g.v)(s,y) g(y) - D03C6n(y), v(s,y)>)2 G(dy)ds]

~ + 3.lB~(y)~p(y)~C(~) ~ 0. .
~

Step m. Here we use the graded structure of X, Y to replace the unifonn boundedness
conditions (1.14)(ui). For j = 1,...,~, , choose a sequence (~) in with

and sup sup .

n xj ~ IRdj

Set = ~)..... ,

= 

Then

X(1)n Y(1)n
Xn = and Yn = 

~ 7

satisfy (1.14)(iii) for all n. . Since ~ = X and Yn = Y on ~) we have
and -~ D~ a.s. Thus to establish convergence in Z~(]P) it

suffices to show boundedness in for some p > 2. .
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First we show sup ll s$g lxs(n) I ~Lp(IP)  oo for all l sp  oo . Observe that

| Xn| ~ |X| and

i x U> y#-i> x i , ..., xj) i s i xU> v# -i> x i , ..., xj -i , o) i + |xj i i i i ,

s (1 + (2n)" + |xj|) ~X~C03B1
so

|DjX(j)n| I = + l

s ~X I C03B1 + (1 + 2(2n )") ~D03C8jn03B1 I I , ~X I , ( 1 . 1 5)

and so sup ~Xn I C03B1  oo . Similarly sup I ~Yn I  oo . By Lemma I . I we are

done.

Now we show inductively, for j = I , ..., k , that sup ] ~ sup ~Dxj (n) ( ] )  ~ for all
~ Sft 

~ 

2 K p  oo . A slight generalisation of Lemma I , I to previsible coefficients would tell us
what to check: instead we work directly. The sequences of coefficients of the SDES

d DXI (n ) = £ 
; = i

+ £ D i, ; 
; = i

+ vt,y > v*, dt>

Dxl(n) = 0 e R’

are Lipschitz, uniformly in n , for each j , , by (1 . 1 5). Thus it suffices to check, assuming
the inductive hypothesis for I , ..., j - I , that they are bounded in LP (P) . But We know

sup I I ~Lp(IP)  oo , for all 2 K p  oo ,
n s - t

i = |DX(j) .y# -I> + X °> .D(03C8(j-1)n03C8jn03B1) x) I

s c + ~X i i  , j) i + i x i ") .

Similarly

i D i Y#> x,y > i s i + i i Y i i p> . I>  i + i x I "> 
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and

A (t) (1 + I x I °‘) p(y)2 , ,

so this is indeed the case. d

§2. Semigroup estimates

Our object of study remains the solution of an SDE of the form

. dxt = X (xr_) dt + Y (Xt-,Y) v) 
(2.1)

. 

x o o e Rd. . 

We explain how, by N applications of the integration by parts formula of § 1

IE [D.f (xr) Dxt] + 1E [f (xr) RrJ = 0

we can derive expressions

JE [D °‘ f (xr)J = 1E (f (xr) , D o = IE[f(xt)03B1t] (2.2)

for multi-indices a of length N. . Any conditions on X, Y and the jump intensity G
which justify this derivation and allow bounds on lE[ lE[ will then yield
useful estimates on the semi group Pt = etG through its representation
Pr f (x o ) = E !f’ (xr )J .

Recall from § 1 that E = ~dl } 0 } G (dy ) is a Radon measure on E , , E’ is an open
subset of E G (dy ) = g (y)dy on E’ with g ~ C 1 (E’ ) , g > 0 on E’ ; ;  is a Poisson

random measure on E x [0,oo) with intensity v(dy,dt) = G , and X -~ ,

Y : Rd x E -~ Rd are nice enough to give (2.1 ) a unique solution xr e t1 Lp (1P) .

The main results of §2 are contained in 2.e and summarized in 2.f. The four preced-
ing subsections isolate and discuss some ideas necessary to these results. In 2.a we con-

sider integration by parts in the special case of an independent increment process. This
r

leads us to consider in 2.b conditions for the integrability of (,~ j h (y) for
OF

h e Li (G) . In 2.c we define some good properties of (g,E’) which distinguish those
cases where we can prove results of the form (2.2), and give some examples. 2.d
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examines a simple example illustrating the phenomenon of degenerating flow and its ef-
fect on densities. 

_

We are principally interested in the forward variable and in relations of the form

= x, y E Rd

together with bounds

J ~ Ct( I + Ix I ~)
~d

and sometimes even . Such is the conclusion of Theorem 2.5 in 2.e.

Theorems 2.6, 2.7 and 2.8 examine ways in which the hypotheses of Theorem 2.5 on X, Y
and (g, E’ ) may be weakened. Theorem 2.6 examines the possibility of a local non-

degeneracy hypothesis on the coefficient Y ~. Theorem 2.7 examines the case where the
flow may degenerate. Theorem 2.8 incorporates Bismut’s [4] trick of using perturbations
of disjoint support to relax regularity conditions on G, X, Y . No two of the improve-
ments afforded by Theorems 2.6, 2.7, 2.8 can be achieved simultaneously. The implica-
tions of these results for the regularity of Pt (x, dy ) in y are reviewed in Theorem 2.10.

It becomes clear that, with slight changes in the machinery, we can get estimates in

the backward variable of the form

= x, y E ~d

with similar bounds on q as on q above. These are stated in Theorem 2.9.

In 2.g we consider whether integration by parts gives the correct rate for slowly

regularizing densities and the correct singularity as 0 . . This is done by a comparison
with results obtainable from the characteristic function when this is known. The final

subsection 2.h illustrates how a careful analysis of the remainder term on integrating by

parts can improve results: we take a specific one-dimensional example and recover a cri-

terion of Bass and Cranston for the existence of a resolvent density.
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2.a Example: Lévy processes

If we take X(x) ~ 0, Y(x,y) ~ y we find as a special case the independent increment

process Xt (  - v) (dy,ds). . (we assume for the moment that I y I PG (dy ) for

all 2 _ p  ~, so this makes sense.) Taking a perturbation of the form v(r,y) = h ,

where h E C~ (E’), h = 0 off E’ , and e 1, ..., ed is the standard basis of the integra-
tion by parts formula reads

E f (xr) Hr ] + ~ f (xr) R/] = 0 ~ (2.3)

where

t

Hr ,

OE

Rjt = 
g Cy) 

°

The conditions

h E Cb 1 ( E’ ) n L1 + (G ), , 

h 
, 

and E (2.4)
dist (., aE ) g

ensure the validity of (2.3) by Theorem 1.2, and indeed, provided  ~ for some

p > 1, permit integration by parts of f (Xt) H-1t to obtain

IE[ Djf(xt)] = IE [f(xt) {DjHt H2t - 

Rjt Ht } ] (2.5)

where

t

DjHt = 
OE

(2.5) implies in particular that the law of xi has a density with respect to Lebesgue meas-
ure, so is a formula worth having. We are thus led to investigate the integrability of H~ 1
in the next section. Of course the characteristic function

eXp {_t ~’ (1 _ (G 
E

gives a more direct and more powerful way to study the transition kernel of xr (see 2.g).
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However, we will see that integration by parts provides a more flexible tool, extending to
cases where the characteristic function is unknown. To satisfy (2.4) h must not be too

big, whereas for must not be too small; the existence of an h satisfying
these conflicting requirements is a property of g and E’ which determines whether xr
has a density. In 2.c we will consider further such properties.

2.b Integrability of Ht 1
t

Fix h e L + (E ) and set Hr = ,~ ,~h (y ) (dy,ds) .

OE

Lemma 2.1

(i) whenever p t  03BBh ~ lim inf G(h~~) log (1 ~) .

(ii) for all 0  t _ 1, , provided lim inf --- > 0 for some
£ J, 0 e"~

v>0. .

Proof.

«

dp
o

where

!;((;) = J(l-~~)G(dy). .
E

Choose with p . There are constants  ~ such that

~(~i) ? ~y ~,h log ~i - C for all ~i >_ ~ia , so

03B2p-1e-t03BE(03B2)d03B2 ~ 03B2p0 + ect 03B2p-1-03B303BBh t 
d03B2  ~.

o p ~o

We move to (ii). Suppose there are constants $, v > 0 and c such that

G (h >_ e) ~ 8 E ’’ - c for all e > Q , then

~(~) >_ (1 _ e _i ) (8 C ) = S’ w _ C ~ ~
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so

03B2p-1e-t03BE(03B2) d03B2 ~ ec’t 03B2p-1e-03B4’t03B203BD d03B2
0 0

= J ~-1 d~  oo . 0
0

One can go back to the exact integral at the beginning of the proof for finer results

on . VVe are content with the crude but simple results of the lemma.

In 2.e we will try to localize to a neighbourhood of the starting point xo the non-

degeneracy condition on Y implying that xi has a (smooth) density. This leads us to

consider integrability of Hil , where for some IRd-valued previsible function u (t,y) and
some S > o , ,

t

Mt ,

OE

T = inf {t_>0 : : 1 Mt >-8} .

Typically, for small S , , lE(T’-1 ) _ ~ , so we cannot appeal to Lemma 2.1. .

Lemma 2.2

We have

 00 for all p  oo

provided

1 u (t,y) 12 S h (y ) and Ct-03B3p

for all 0  1, y e E , , p  oo , for some C, y  00. .

Proof. Pick q > Y . , We have

{HT   ~? U (HT  e and T  

and

 Ep _ C for all 0  ~ S 1, p  ~ . .
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To show lE(HT ) for all p it thus suffices to show IP(HT  ~ and T  = 0(Ep)
0 for all p  oo. . Write Mt = Mf + Kf with

t

Mf = 1 f I u ( s ,y) I  ei",~ 1 (~ - ~) (dy,ds) !
OE

. 
t

Lt = ,

OE

t

Kf .

OE

Set S = inf ( t >_ 0 >- ~ } , where

t

.

OE

Note that and ~ { T _ S } . We have the Burkholder-Davis-

Gundy inequality

IE(sup |M~t|p) ~ C(p,d)IE([M~]p/2S) .

Therefore

IP( sup |M~ t > 03B4 2 and HT  ~) ~ IP( sup |M~t | > 03B4 2)

~ 2p 03B4p C (p,d) (~ + ~1/q)p/2 for all p  ~ .

But for T  ~1/q and HT  ~ , | L~T |  ~1-1/2q and | K~T | ~ ~1/2q  h (y)G (dy) , so for
E

sufficiently small e > 0, ,

T  

~ IP H  e and sup IMf I > s = 0 ~p for all  ~ . 0
t s 2 ~ P
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2.c Regularizing measures

E’ is an open subset of Rd 1 { 0 } , g E C 
1 (E’) with g > 0 and G (dy ) = g (y ) dy on

E’. Set

Hg = {h ~ C1b(E’)~L1+ (G):

h dist (., ~E’) and D(g.h) g ~ C(E’)~L2(G)},

H~g = {h ~ C~b (E’)~L1+ (G):

h dist (.,~E’) 
~ C(E’)~L2(G) and D(g.h) g ~ C~b (E’)~L2(G)}

(the b in Cb refers to all r derivatives). Write

t

.

o E~

We say that (g,E’) is slowly regularizing of rate ~, or X-regularizing if

E (Hr ~ )  ~ for all 0  t  ~, for some h E .

(g, E’) is ~-regularizing if

E  ~ for all 0  t  ~, p  ~, for some h e .

(g,E’) is (03B3-)super-regularizing if

lE S for all 0  t _ 1, p  ~, for some C, Y  ~, h e .

If is replaced by ~ in these definitions we say (g,E’) is smoothly ~,-regularizing and
so on. In each case we refer to h as the regularizing function.

We shall see that if (g, E’) is X-regularizing then the transition density of the process
t

xr = j J y (~ - v) and those of many related processes acquire derivatives at rate ~
OE

as t -~ oo. It seems hard to provide workable general criteria for (g, E’) to have regulariz-
ing properties. Instead we look at some examples.

Fix an open subset B of 8 > 0 and go e C 
1 (Rd) with go> o. We take for

E’ the sector S = {y E IRd : 0  |y|  8, y l I y I E B}.
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Lemma 2.3

(i) (ty ’S’) is 03BB-regularizing for all 03BB  area (B).g0(0). (In the case d = 1,
area (~)= card (B).)

(ii) log1 |y|g0(y), S) is oo-regularizing.

~

(iii) (!yt"~~o(y)"S’) is super-regularizing whenever a > d. (j is
o ~

well defined for a  d + 2.)

Proof. Take open sets ~B" in with ~~~,~~B. Set

S’ = (y ~ IRd : 0  |y|  203B4 3, y |y| ~ B’), S" = {y ~ IRd : 0  |y |  03B4/3, y |y| ~ B"}.
Take functions 03C6~C1(IRd) with 1B"~03C6~1B’ on and 03C8~C1(0,03B4) with

1(0.8/3)V~1(0,28/3). Then

Dh(y) = {03B2y |y|03C8(|y|) 03C6(y |y|) + D 03C8(|y|) y03C6(y |y|) + 03C8(|y|) D03C6(y |y|)(I - yyT |y|2) |y|03B2-1
is bounded. Noting that 2014201420142014 is bounded on S, we can show in each case (i), (ii), (iii)
there is a constant C  ~ with 

1 
for all y ~ S. Also, there isa

~(~)
constant y > 0 such that dist(y, ~S) ~ 03B3|y| t for all 

(i) Consider the case g(y) = |y|-dg0(y). We have

5

( h(y) dist(y,~S) )2 g(y)dy ~ ~g0~~ are(B) 03B32r2(03B2-1)r-1dr  ~

(|D(g.h)(y)| g(y))2 g (y)dy ~C2~g0~~area(B)r2(03B2-1)r-1dr  ~

F( J 0

So h ~ Hg. But

G(h~~) log 1 ~ ~ G({h~~}~S") log 1 ~= 1 log1 ~ g0(r,03B8) r d03B8dr

~ g0(0) area(B") 03B2 as ~~ 0 .
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Since we may take arbitrarily close to area (B), (i) now follows from

Lemma 2.1 (i).

(ii) Consider the case g (y) = )y )"~ log Then h ~ ~, as in (i), because

j 2014 dr  oo. This time however
o ~

~~~)> ~ ~ ; ~ 

’

(log (log 

So , " ~> -~ oo and (~,~) is oo-regularizing by Lemma 2.1 (i)
log1/~

(iii) Suppose finally g (y) = ty i "~ with a > d. In order that h ~ ~ we must have

r03B2r-03B1+d-1 dr  ~ and r2(03B2-1) r-03B1+d-1 dr  ~, that is 03B2 > (03B1-d) (03B1-d 2 + 1).
But any such P will do, because

- ~ (a - d)g o(0) area (B") as 6 , ,

and we may apply Lemma 2.1 (ii) 0

Fix 8 >0 and go e with go >0. We take for E’ the punctured ball
{0tyt8}
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Lemma 2.4

(i) { 0  I y I  ~ } ) is smoothly X-regularizing for all

~-~o(0).area(~).
(ii) ( ( y g o (y ), ( 0  I y I  ~ } ) is smoothly super-regularizing whenever a > d.

Proof. It is clear from the proof of Lemma 2.3, dispensing with the cut-off ~, that for (i)
we may take h (y ) = y~( I y ), for (ii) h (y ) = y~( Iy I) where 3 is any even integer

= 2 + 1 , E C °° ( 0, S ) with 1 (0, &#x26;I3) _ ~ _ 1 (4, 2&#x26;~3) . 
o

2.d Degeneracy in the flow of diffeomorphisms

Consider the following example: G (E ) == 1, X (x ) = x, Y (x, y ) = -x, so that

and give xt a smooth initial density P(x o then

,

where £0 is th unit mass at 0. There is clearly some feature of this innocuous-looking
SDE we will wish to avoid.

Under appropriate regularity conditions there is a version of the family of solutions

of (2.1 ) as x o ranges over ~d (and Jl remains fixed) which depends smoothly on x o. Dif-

ferentiating formally (2.1 ) with respect to x o, one in fact arrives at the correct SDE for the

derivative of the map x o 1 ~ xt. Define a process Jt in L (1Rd ) by the SDE

dJt = DX(xt-)Jt-dt+D1Y(xt-,y)Jt-( -03BD)(dy,dt)}

J0 = I ~ (IRd) (2.6)

An application of the It6 formula for jump processes shows that the matrix inverse Jr t
should satisfy

dJ-1t = -J-1t-{DX (xt-)-(I + D1Y(xt-,y))-1 D1Y(xt-,y)2 G(dy)} dt

-J-1t-(I + D1Y(xt-,y))-1D1Y(xt-,y)( -03BD)(dy,dt) (2.7)

Jol = 1 e 
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and it is easy to check that when a unique solution to this SDE, Kt say, exists we have

d (JtKt) = 0 and so Kt = Jr 1. This assumes of course that I + D1Y (x,y) is invertible.

The example above behaves badly because whenever jumps, wherever the process
is, it jumps to the same point 0 : ’non-degeneracy is lost.’ This can be prevented (locally)
by insisting x0 |~ xt is a local diffeomorphism, that is, Jt is invertible. By this discus-
sion we motivate the assumption made in 2.e that

sup sup I (I + D1Y (x, y ))-1 I  ~

Theorem 2.7 will show however that this assumption is not always necessary.

2.e Nth order integration by parts

We return to the general case where xt is the solution of an SDE

dxr = X (xt_)dt + Y (xt_,y) (lu - v) (dy,dt) ,

and prove five results about the semigroup Ptf (xo) = (xt)), as described above.

To obtain the first result, Theorem 2.5, we choose a perturbation which gives the derived

process Dxi a simple form and perform the ’obvious’ iterations of the integration by parts
formula (1.13). Theorems 2.6, 2.7, 2.8, 2.9 are variations on the same theme.

To aid comparison of results we state most hypotheses relating to the coefficients
X, Y in one go. E, G, N,, v, E’, g are defined at the beginning of ~2 and the sorts of
hypothesis to be made on (g, E’) are considered in 2.c. Fix constants C, p and a

strictly positive function p e C (E’) n n LP (G ). Consider the conditions

(i) X : : Rd is with

IDX(x) 

+ n SN + 1 ;

(ii) Y: : ~td x E -~ Rd is measurable, in its first argument, C2 in its

second on E’ (resp. on E’), with

I D lY(x,y) I ~ p(y) (2.8)

I D1Y(x,y) I S (1 + Ix I ~) p(y), n N + 1, , (resp.2.9)
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C(I + on E’, m=1,2, n _N,

(resp. |Dm2 DiY(x,y)I _C(1 + on E’, m +n _N + 1),

(iii) I D 2Y(x,y)-1 I _ C (1 + ix I ~) on E’,

(iv) I (I + D 1 Y (x,y )) ~ ( _ C.
The hypothesis made in Theorem 2.5 is the stronger condition (2.9). Theorem 2.6 relaxes

(2.9) (iii) and Theorem 2.7 relaxes (2.9) (iv). Theorem 2.8 is proved under the weaker
condition (2.8).

Theorem 2.5

Suppose (g,E’) is smoothly ~,-regularizing (0  ~, _ ~) and that X,Y satisfy (2.9).
Then for all t > 0 and all multi-indices a of length N there exists a Borel function qf
on R~ x ~d such that,

D~ = 
~ E ,

 |q03B1t(x,y) |p Pt(x,dy) ~ Ct,N,p(1 + |x |03B2),

whenever Np  If (g,E’) is moreover smoothly 03B3-super-regularizing we can take
~, = oo, Ct,N,p = 9 (t ) where 8 (r ) increases with t > 0.

Proof. Take any regularizing function h and consider the function

v : L (Rd) given by v (r,y) =D 2Y(xr-,y)-1 (I + D lY(xt_,Y)) Jt- h (Y).
We associate with v and with the solution zt of an autonomous SDE %

dzt = Z (zt_)dt + W (zt _,y ) (dy,dt), z p e Rm ,

a derived process Dzi solving the SDE

dDzt =D Z(Zt-) Dzt-dt + D 1W(zt_,y) (dy,dt)

+ v (t,y) ,

Dzo =0 e 

We chose v so that Dxt = JtHt where

r

.

o E
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This may be checked by identifying JtHt as the unique solution of the SDE for Dxt. Set

R r .e= J J chv .v.e)(s,~ ’ t~ _~ ) (~’ ~~ ~ ) , e e Rd .

o E g CY)

Using each component vl = as a perturbation, we obtain from (1.13) the formula in

(IRd,IR)

IE[Df (Zr).Dzrl + IE[f (zr)Rr) = 0 . (2.10)

Set _ (xr,Jr,Hr), ~ = and define inductively _ 

n >_ 2. The process zr = n >_ 0, satisfies an autonomous SDE. We apply (2.10) with

f (zr) replaced by f (xr) J-1t H-1t q(z(n)t), where f and q are test functions. This produces a

formula in L ()~d,L (1Rd)). On taking the trace we get

IE[Df (xt) q(z(n)t)] = IE[f (xt) (Aq)(z(n+1)t)], (2.11)

where

(Aq) (z(n+1)t)=-D.(J-1t)H-1tq(z(n)t) + DHt.J-1tH-2tq(z(n)t)

-Dq (z(n)t).Dz(n)t .J-1tH-1t - Rt . J-1t H-1t q (z(n)t), (2.12)

and where

D. (Jr 1 ).e = trace (e’ | ~ -J-1t (DJr.e’) J-1t e ), e E 1Rd

Writing A= (A1, ...,Ad) and A(j1,...,jN) - AjN ...Aj 1 
we have by N iterations of (2.11 ), for

lal =N,

(xt)l (xr) (~«1) (2.13)

To complete the proof we must form an adequate impression of the SDE’s for

Zr"~, n = 0,1,...,N -1 and of the functions .~ 1 to justify the steps leading to (2.13). In

preparation we set (for fixed n)

~(x) _ (X (x), DX (x),...,D n+1X (x)),

~ (x,y) = (Y(x,y),D1Y(x,y),...,Dn+11Y(x,y)),

~(x,y)=D2Y(x,y)-1(I + D1Y(x,y)),
03B6(x,y) =(

D

(g.h) (y) g(y), D2~(x,y)h (y),...,D n-11D 2~(x,y)h (y)) ,
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03C1(x,y) =(Dmh(y),Dm-1(D(g.h)(y) g(y)),Dm2Dk1Y(x,y),D2Y(x,y)-1 : m + k ~ n + 1)
We will eventually show for n = 0, 1 , ...,N - I that

(A) The process is well defined as the unique solution, of a graded system of SD E’ s

dZt " Z (Zt-)dt + W l (Zt-,Y ) (F - V)(#,dt) + W2 (Zt-,Y )h 

where for some polynomials P (§,z) linear in §, Q (§,z) linear in §, and R (p,z), we

have

Z (Z ) K P (§(x ), Z ) , ,

W I (Z,y ) " P (n (X,y ), Z ) + Q (§(X,y ), Z ) ’ ,

W2 (Z,y ) " R (P(X,y ), Z) . .

Moreover IE[ I l P]  0(t) (I + l x I # ) for some increasing function 0, for all

i  p  -,

(B) For j a j = n, (A03B11) (z)n)) is a polynomial in z(n)t, J-1t and DmHt/Ht, m = I, ...,n,

multiplied by Hfi .

First let us see that (A) holds for n = 0 ((B) is trivial). We have the C (d,d2,13 P)-

system

ai = x xi_> dt + Y xi-,y > v - v> #,dt>

dJt = DX Xt _> Jt_dt + D i Y Xt _ , y > Jt - y - V > #, dt >

dHt " h W ) v (9, dt)

which is manifestly of the desired form.

Now let us see that (A), ~B) suffice to justify the fonnal steps leading to (2. 13) 
and

show IE[ | (A03B1 1) (z(N)t )|p] ~Ct(1 + |xo|03B2) for Np  03BB t, with Ct = 03B8(t)t-03B3Np if (g,E’) is 03B3-

super-regularizing. The result then follows on setting

= E[J4a 1 > (29~ ) ’ Xt " Y l . .
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Since h E and X, Y satisfy (2.9), (A) enables us to check the hypothesis of Theorem
1.2 and show formula (2.10) is valid for Zt = and for all test functions f. Of course

f (xt) H-1t (A03B1 1) (z(n)t) is not a test function of However

- by (2.9) (iv), in particular, the SDE (2.7) has a solution in n LP(JP) which may be
/?~

identified as 

- if h is ~,-regularizing and Np  we have (P);
- if his y-super-regularizin g 
- since h E and by (2.9) (ii), (iii) we have DmHt _ A {t)Ht for some increasing

process A (t) E n Lp (1P), for m =1,...,n.
p~

Thus (A), (B) imply  Cr ( 1 + x ~ ) for I a I = n. Approximating
| ~ f J-1tH-1t (A03B1 1) by test functions and passing to the limit, we obtain the

desired formulae.

Finally, assuming (A), (B) hold for n, we must show they hold for n + 1
(n = 0,1,...,N - 2). Note firstly from the SDE’s at the beginning of this proof how the
SDE for Dzi is obtained from that for zt. It is routine to check from our hypotheses that, if
the SDE for is a C (d 1,...dk; 03C1)-system then, by linearity of P (03BE,z) in 03BE, the SDE for

is a C (d 1, ...dk, d.d ~ ,...,d.dk;P)-system (n >_ 1 ). Moreover, the coefficients of the
SDE for being obtained as derivatives of coefficients for zt"~, it is clear that the
polynomial description given in (A) holds for these new coefficients. The bound

comes from Lemma 1.1. The inductive step for (B) is clear on inspecting the formula
(2.12) for Jc1q. 0

Theorem 2.6

Suppose (g,E’) is smoothly y-super-regularizing with regularizing function h and
that X, Y satisfy (2.9) (i) (ii) (iv). Suppose further that for some open set U  Rd, for all

E’,

I Y(x,y)12 h(Y),

I  C (1 + ix I a) .

Then for all t > 0 and all multi-indices a of length N there exists a Borel function qa on
U x ~d such that

Dy = x e U, y e Rd ~
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j Iq°‘(x,y) I P _ 8(t, 8) (1 + Ix I ~)
Rd

for all x ~ Us ~ {x E U : dist (x, aU) > 8}, where 9(t, 8) increases with t > o.

Proof. Only a slight modification of the proof of Theorem 2.5 is necessary. Suppose
x E U s. Take a Coo function 03C6 : IRd ~ [o,1 ] with

1 if |x - x0| ~ b12,
03C6(x) = 0 if |x - x0 | ~ 03B4

and set

v03C6(t,y) = $(xr-) (I + D Jt-h CY) . .

With this new perturbation we have Dxr where

r

.

o E

The cut-off )) serves to eliminate any singularities in D2Y(X,y) which may result from

weakening (2.9) (iii). Note that by the hypotheses of this theorem

IE[H-pT +  8(t, 8) (1 + I x |03B2) for all p  ~

by Lemma 2.2, where

: |xs - x0 | ~ 03B4/2} . 

The proof follows that of Theorem 2.5 with minor modifications. 0

Whilst we have localized one non-degeneracy condition (2.9) (iii), Theorem 2.6 still

assumes (2.9) (iv) (I + D 1 Y (x,y ))-t  C for all x,y, so this attempt at localization is

rather unsatisfactory. However (2.9) (iv) cannot be made local: degeneracy of the flow is

an ongoing danger!

The next result applies to the case where the flow may degenerate, that is, where

condition (2.9) (iv) I (I + D C fails. Consider the SDE for the derived

process Dxt

dDxt = DX(xt-)Dxt-dt +D1Y(xt-,y)Dxt-( -v)(dy,dt)
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.

The third term in this SDE is somewhat at our disposal and the idea is to use it to cancel
out those jumps coming from the second term which make the matrix Dxi (close to)
degenerate, that is those for which I (I + is large.

Theorem 2.7

Suppose (g, E’) is smoothly ~,-regularizing (0  ~, _ oo) and that X, Y satisfy (2.9) (i)
(ii) (iii). Suppose further that we can find 03C6 ~ Coo (E’, [0, 1]) such that G (supp 03C6)  ~,

 dist (y, a E’), e CN-1b ( E’ ) and, setting 03C6 z 0 off E’ ’If = 1 - we have

Then for all t > 0 and all multi-indices a of length N there exists a Borel function qa
on Rd x Rd such that

Dy = 
~ x,y E ,

f ~p Ct,N.p (1 + ix I ~) ~
~d

whenever Np  If (g, E’) is moreover smoothly y-super-regularizing we can take
~ = ~, Ct,N, p = 8(t) where 9(t) increases with t > o.

Proof. Set

E

and consider the following modification of the SDE (2.6) for Jt 
.

dKt = S (xr_) Kt-dt + U (xt_,y) 03BD)

Ko = I E 

We find there is a unique solution Kt E n and moreover Kt 1 exists and lies in
p~~

n for all 0 ~ t  ~. This is because K-1t satisfies
p~~
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dK-1t = (S (xi_) - j (I + U (xt-,y))-1 U (xt-,y)2 G (# ) ) dt
E

- Kl~ (I + (v - V) (dy,dt),

Kj~ = I e 

and by hypothesis I (I + U l  C.

The proof now follows closely that of Theorem 2.5 but with Kt in place of Jt and

with modified perturbation

V(t,Y ) " D 2Y(Xt-,Y ) ~ ( (I + U (Xt-,Y )) Kt-h ~Y ) - V (Xt-,Y ) Kt- Ht - )

where h is some regularizing function and where

t

Ht = j j h ~y ) .

0 E

With this choice of v we have Dxi = KtHt, as may be checked by substituting KtHt into

the SDE (I , I I ) for Dxi.

Set = (xt,K,,Ht), = (z)°~ and inductively = 

n z 2, as in the proof of Theorem 2.5. It is a little more complicated to describe the

SDE’s for this time: fixing n, set

§(X ) * (X (XI’S (X I’DS (X l’ .. "D ~S (X ))’

n(x,y ) = (Y (x,y ), U (x,Y ),D i U (x,Y ), ...,D ? U (x,Y )),

X(X,Y ) " D 2Y (X,Y ) ~ (I + U (X,Y )), "(X,Y ) " D 2Y (X,Y (X,Y ),

ix,Y > = (T , D 2xx,Y > h ~Y >; ..,D ?-~ D 2xx,Y > h ~Y >;
~ , D 21CX,y > #~y >, ...,D ?~~ D 21CX,y >#~y > ,g ~Y ) 

Px,Y > = 

D( Dg y (x,y), D 2Y (x,y)~~ : m + k £ n + 1 .
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With ~, ~,, ~, p so redefined we can show that assertion (A) in the proof of Theorem 2.5
holds for the new zr"~. . It is now routine to check the validity of each of the N integrations
by parts leading to (the analogue of) (2.13) thus completing the proof. 0

Theorem 2.8

Suppose (g,E’) is ~-regularizing (0  ~, S oo) and that X,Y satisfy (2.8). Then for all
t > 0 and all multi-indices a of length N there exists a Borel function q~‘ on
Rd x Rd such that

D03B1y Pt(x,dy) = q03B1t(x,y) Pt(x,dy) , x,y e IRd ,

f ~p s (1 + 1x ,

~d

whenever Np If (g, E’) is moreover y-super-regularizing we can take

?~ _ ~, = ~(t) where 8(t) increases with t > o.

Proof. Fix p ~ 1, T > I . We follow closely the proof of Theorem 2.5 but perform the
nth integration by parts, n = 1,...,N, with perturbation

(I + D lY(xt_,Y)) Jt-h(y)1((n-1)03C4,n03C4} (t)

where h is some regularizing function.

We associate with and with the solution zt of an autonomous SDE

dZt =Z(zx_)dt + W(zt_,Y) (p,-v) (dy,dt), zp e IRm,

a derived process D solving the SDE

= DZ (zt_) + D t W ~) 

+ N~ 

Set

h (Y) 



302

We chose v(n) so that D = This may be checked by identifying as the

unique solution of the SDE for Define a random variable E L(Rd,R) by

R(n)t .e = div (g.v(n).e) (s,y) g(y) ( -03BD)(dy,ds)
, e ~ IRd

Using each component = as a perturbation we obtain from (1.13) the formula
in 

E[Df + (Zt) _~. (2.14)

Let = (xt,Jt) and define inductively

Z(n) = n > 1.

The process Zt = satisfies an autonomous SDE. We apply (2.14) with f (zt)

replaced by f (xt) J-1t(H(n)t)-1 q (ztn-1)), where f and q are test functions. This produces a
formula in On taking the trace we get

E[Df (xt) q (zrn~l))) _ ~~ (xt) ( ‘~ n)q) (2.15)

where

(z~n) ) = D ~n) q 

+ D ~n) H~n).,1 ~ 1 (,~hn) )-Zq 

- q (2.1b)

and

D ~n).(J~ 1 ).e = trace (e’ e E Rd

Writing ~n) _ (.~.~"), ..., ~d") ) and - ’ ~.. ° we have by N iterations of

(2.15), for I a I = N,

. 

= = Ey (x,) (~,1) (z~)] (2.17)

To complete the proof we must form an adequate impression of the SDE’s for 

n =0,1,...,N-1 and of the functions .9fa 1 to justify the steps leading to (2.17) and esti-

mate lE [ I (~ 1 ) (z rN? ) I p ]. Fixing n we set
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~(x) _ (X (x), DX (x),...,D n+iX (x)} , ,

~l{x~y)= (Y(x~y)~ .

We will show for n = 0,1,...,N-1 that:

(A) The process is well defined as the unique solution of an SDE

dzr = Z (zr_) dt + W (~ - v) (dy,dt}

+ W 1(t,zt_,y) (dy,dt) + I~ (d3’,dt)

where, for some polynomial P (~,z), linear in ~, Z {z) = P (~,{x),z),
W (z,y) =P (~(x,y),z), where

n

Wj(t,z,y) = ~ (t), ~ =1~2~
i=1

and where for some k, d 1,...,dk, p E ~ Lp(G) and’ for i =1,...,n
Z E C(d 1 ... > dk) > W E > W2i E C(d 1 > ... > dk’ > p2) .

Moreover lE[ I ip] _ 8(t) (1 + |x0 |03B2) for some increasing function 9, for all

1_p ~.

{B) For I a I = n, is a polynomial in J-1t and D(k) H(k)i / H(k)t,

k =1,...,n, multiplied by ( H(k)t)-1.
First we show that (A) holds for n = o. ((B) is vacuous.) We have SDE’s

dxt =X (xr_) dt + Y(xt_,y) v) (dy,dt)

dJt =DX (xt_} Jt- dt + D l Y (dy,dt) , ,

so (A) holds with W 1= W ~ = 0, k = 2, d 1= d, d 2 = d 2 by (2.8) and Lemma 1.1. .

Now we show why (A), (B} suffice to justify (2.15} with 

( I a I = n -1, n  N} whenever t >_ n~c and, on choosing ~ as close as necessary to f,
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+ , lal I = N

whenever Np  03BBt, Ct taking the form 8(t) t-03B3Np in the y-super-regularizing case. From
this the result will follow on setting

q03B1t(x0,y) = IE[(A03B11)(z(N)i)|xt = y]

The main point to note, and the justification for the rigmarole of N different perturbations,
is that, to integrate by parts after some time (n -1 ) ~ say (i.e, using a perturbation vanish-
ing for 0  t  (n -1 ) ~), we only need conditions (1.9), (1.10) of Theorem 1.2 to hold for
t > (n -1 ) T. It would be easy to extend the proof of Theorem 1.2 to cover this case. On
the other hand, since ~, has independent increments and is Markov, it is also a conse-

quence of Theorem 1.2 (by conditioning on ~’~n_ly~). It is easy to check from (A) that
(after (~ - 1) ~) (1.9), (1.10) are satisfied by the SDE for (Zrn’1~, and the perturba-
tion v~"~. . Thus the integration by parts formula (2.14) is valid for zi = and
for all test functions f. Of course f (H(n)t)-1 (A03B1 1) (z(n-1)t), I a = n -1 is not a
test function of (z(n-1)t, H(n)t). However we can show for all 1 _ p  ~,

- IE[|J-1t|p] ~ e(t) (1 + |x0 I 03B2);
- if h is 03BB-regularizing and Np 03BB  N03C4 S t, then ~ L1 lP for n =1,...,N;

- if A is = r , ’ IE[(H(n)t)-p] ~ C(t N)-03B3p;
- lE[{D (n) H(n)/H(n)t)p] _ 9(t) (1 + |x0 I 

Thus (B) and the independence of H(1)t,...,H(n)t show that 1 ) {z(n)t) ~ L1 (1P), for
I a I = n. Appmximating (z~"’1~, I -~ f {xr) 1) by test

functions ( I a I = n -1 ) and passing to the limit we obtain the desired formulae.

Finally, assuming (A) and (B) above hold for n -1 we must show they hold for n.
We have the following SDE’s for = ~Zt"‘l~, Hr"~, 

= ) dt + W y) ~) 

+ W 1 Y) {I~ - Y) + N~ 

dD ~") = D ~") dt + D 1 W D ~"~ (N~ -’ ~) 

+ D 2 W {zr’_‘’l~,y) (t,Y) 

= h (y) (t) N~ 
.
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= Dh (t,y) 

(~ - ~ 
8 CY) 

’ °

Note

(i) v("~ (m, t,y ) may be written v(’~~ (t,xr _,Jr _, y ) where

(I + D 3

(ii) all terms in W i W 2 disappear from the SDE for D (n) because D (n) = 0

and (t,y ) = 0 for 0  t _ (n -1 ) ~ (this feature of the derived processes, explains
best why the use of disjoint perturbations is a useful trick).

It is now routine to check from our hypotheses and the known graded structure of the
coefficients Z,W,Wi,W2 that (A) holds for n. In particular Lemma 1.1 gives the
existence of a unique solution with the stated LP(1P) bound. Suppose (B) holds for

n -1 ). We inspect the formula (2.16) for ~n~. The only term potentially not of the right
form is the third: I = n -1 ) Dq will introduce terms multiplied by (Ht 11 ) 2
(for example) rather than But D (nl = 0 for m  n so these tenns do not

figure in ,~n} ~ 1. This completes the inductive step. 0

Theorem 2.9

Suppose (g,E’) is ~-regularizing (0  ~, S oo) (in particular y-super-regularizing will
do ) and that X, Y satisfy (2.8) (i) (ii) (iii). Then for all t > 0 and all multi-indices a of

length N there exists a Borel function q°‘ on R~ x Rd such that

Dx = 
~ x~y E 1Rd

~ ’ Cr,N, P (1 + Ix I ~) (2.18)
~d

whenever Np  In the y-super-regularizing case we can take Cr,N, p = 8(t) with 8

increasing.

Suppose now that (g,E’) is smoothly super-regularizing with regularizing function h
and that X, Y satisfy only (2.9) (i) (ii) but that for some open set U  Rd

I Y(x,y)12 ~h~Y) 

S C (1 + 
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for all x E U, y E Rd. Then for all t > o and all multi-indices a of length N there exists a
Borel function q°‘ on U x Rd such that

DX = 
~ x E U, y E lRd

~ I ~ ~(t~ S) (1 + !x I ~)
~d

forx e U8 = {x e U : : dist (x, > S}, where e is increasing in t.

Sketch proof

For an autonomous SDE

dzr + W (zr,y) (~, - v) (dy,dt)

with initial condition depending smoothly on x ~ (z o = y (x a )) we know there exists a

version zr = of the family of solutions as x a ranges over Rd depending smoothly
on x a, a.s. and in L z (1P) (under appropriate conditions). Suppose inductively we have for
multi-indices a of length n, such a and functions q a with

D °‘ = 

being the flow associated with Xt = ~r (x a ). Differentiating

DD " Ptf (x) = IE[Df.03C6t(x).D03C6t(x)q03B1 . 03C8(n)t (x)]

+ IE[f° D9°‘ ° 03C8(n)t (x)D03C8(n)t (x)] .

We now apply integration by parts with the perturbation of Theorem 2.5 to the first term
on the right: taking x a = x, the formula reads

~ LDf (xt) Jr . (2.19)

= E ff (xt){H-2tDHtq03B1(z(n)t-H-1tDq03B1(z(n)tDz(n)t-H-1tq03B1(z(n)t) Rt}]

Thus if we set

= Cx0)) (2.20)

(assuming Hr, Rr, xr, Jr already to be among the components of z~n)) then satisfies

an autonomous SDE and writing for the associated flow we get expressions
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for multi-indices a of length n + 1. With hindsight we must begin with = (xr,Jr,Ht)

zp = (xo),Rt), and use (2.20) for n >_ 1. To carry out a detailed proof
would require an analysis of the nature of the inductively defined SDE’s for and the

functions see for example the proofs of Theorems 2.5 and 2.8. This we omit. It is

clear by a comparison of the SDE’s for DZt and that the processes n > 0

defined above will behave no worse than those in Theorems 2.5, 2.8, so the same

hypotheses will do. Indeed we are able to drop the hypothesis (2.8) / (2.9) (iv)

I (I + D 1 _ C

completely because there is no need to ’remove’ Jt from the left side of (2.19), so no men-

tion is necessary The crucial factor in is still H-nt (or II (H(k)t)-1 if
k=1

disjointly supported perturbations are used) which explains the similarity of the form of
this theorem to earlier results. 0

Notice that without condition (2.8) / (2.9) (iv) the local version of this theorem is more

satisfactory than Theorem 2.6, in that it does without any global non-degeneracy condi-
tion.

2.f Regularity of the transition function

We show how the estimates of 2.e for the forward variable translate into regularity
properties. First here is a summary of Theorems 2.6, 2.7, 2.8. Consider the following
conditions on (g, E’) (see 2.b)

(A) (g, E’) is ~-regularizing (0  ~, S ~),

(B) (g,E’) is y-super-regularizing (0  y  oo),

(C) (g, E’) is smoothly ~,-regularizing,
(D) (g, E’) is smoothly 03B3-super-regularizing with regularizing function h

(we have (D ) => (C) => (A ), (D ) _> (B ) _> (A )), and the following conditions on X, Y
(see 2.e)

(I) X, Y satisfy (2.8),

(II) X, Y satisfy (2.9) (i) (ii) (iii) and there is a ~ E C °° (E’, [0,1 ] ) with

G (supp ()))  ~, ~(y) _ dist (y, D (g’ ) E (E’) and such that, setting
g

~ --- 0 off E’, y~ ~ 1- ~, we have, for all x E Rd, y E E , ,
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I (I + I ~ C ,

(III) X, Y satisfy (2.9) (i) (ii) (iv) and there is an open set U ~ Rd such that for all
x e U,y e E ,

I Y(x,Y)12 

I _C(I + .

We showed that (AI) or (CII) or (DIII) imply for i a I = N the existence of a Borel func-

tion e Rd x Rd such that

Dy = 
~

I ip Pr(x,dy) _ Ct(1 + Ix |03B2) (2.21)
~d

subject to the restrictions

Np  ~,t under (A) and (C) ,

x E Us = {x E U : dist (x, aU) > 8{ under (III)

and with the extra information under (B) or (D)) that

Cr = 8(t) with 8 increasing in t .

(8 may change below but it will remain an increasing function of t.)

Fix an integer S ? 0 and a multi-index a of length n = N - d -1 and consider the dis-
tribution

~,(dy) _ (1 + I y 12)s Dy Pt(x,dy) .

If a’ is a multi-index of length d + 1 we have by (2.21 ), for some polynomials k a.., ,

!~ (dy) _ ~ ka" (x~y) ~

la"I_d+1

Set

I~(u) _ ,~ i~ (dy)
~d
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then by (2.21 ) (provided N under (A) and (C))

. I I = I I _ Ct(1 + I x |03B2)

(with Ct = 8(t) under (B) or (D)}. Since a’ was arbitary, ~, E and by
Fourier inversion there is a function f E Cb (Rd) such that

= f (y) dy, ~f~~  Ct(1 + Ix |03B2)

We have proved.

Theorem 2.10

Suppose (AI) or (BI) or (CII) or (DII) or (DIII) hold, and I a I = n = N - d -1 > 0

with

0 _ n  ~t - d -1, , in cases (A) (C) ,

x E U s for some 8 > 0, in case (III) .

Then Pt(x, .) has a density pt(x, .) E with

|D03B1ypt(x,y) | ~ Ct(1 + |x |03B2) (1 + |y|s)
and in cases (B), (D) we may take

Ct = 8 (t } 

with a an increasing function of t, for any e > 0. 0

2.g How good are the results?

We test the power of our results in one dimension against a simple analysis of the
Fourier transform

-t  (1-e-iuy -iuy)G(dy)~ o 

which is available in the case of the independent increment process with, for simplicity,
positive jumps
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t 00

J .

We assume f yP G (dy ) for all 2  p  oo.

o

Case 1: G admits a decomposition

G(dy) = 03BB y 1{0y03B4} dy + (dy)

for some positive measure G. Then v

|t(u)| = exp{-t(1 - cos uy)G(dy)}~exp{-t 03BBdy}
o ~ 

yL .. Tnrr

- 
°

So yt has a CZ(R) density whenever 0 S n  ~t -1. On the other hand we could apply
Theorem 2.10, with E’ = (0, 8), g (y ) = ~ly and regarding G as living on a disjoint copy of
R +. We showed in Lemma 2.3 that (?L/y, {0  y  8}) is ~-regularizing for all ~,’  ~,.

The remaining conditions of Theorem 2.10 are easy to check and we find that yr has a

density whenever 0 _ n  ~,t - 2. The rate of regularization is correct but one

degree of differentiability has been lost - because one can only integrate by parts a whole
number of times.

Case 2: G admits a decomposition

G(dy)= 1 y03B1+1 1{0y03B4) dy +  (dy)

for some a > 0 and some positive measure G. Then

|t(u)| ~ exp{-t 1 y03B1+1dy}=03B8(t)e-t|u|03B1
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So yt has a C °° density for all t > 0. Moreover

_8(t) ,~ lu In du
R

= e(t) t - a (n+1)

On the other hand we could apply Theorem 2.10. By Lemma 2.3, (y~°‘+1), {~  y  8})

is 03B3-super-regularizing for all ’Y > 1 2 + 1. a . By Theorem Z.10, yr then has a C°° density

for all t > 0 with

I D ~ ~ 9 (t ) t=~n +2) (2.22)

The extra ~ 2 in Y was thrown away on disregarding the behaviour as t -~ 0. of

1E[ l (,~ 1 ) (zr~’) ) i ] (for example) in the proof of Theorem 2.8, and may be recoverable
(see 2.h). The change from n + 1 to n + 2 is inevitable as discussed in Case l. .

2.h Locally stable processes (after Bass and Cranston)

We recover a result of [1] that the ’locally stable’ Markov process xr, with generator

Gf (x) = 1 03B1(x) {f (x + y)-f (x) - Df (x ).y} y-(1+1 03B1(x)) dy ,

has a resolvent density provided

i 1  a’ _ a x _ a"  1 for all x E R, for some a’, a",

(ii) a e Cb (1R).

In fact we prove a stronger result that if a" + 1   3 then, for all 03BB, sufficiently large

and f E Cb (lR),
- 3

’ IE  e-03BBt Df (xr) dt S C03BB-+03B3 ~f~ ~ . (2.23)
o

Take E’ = (1,~), G (dy) = g CY) dy =1{y>n dy~ Y(x~y) =Y~‘~x) then

C1f (x) = .~ t.f (x + Y(x,y)) -.f (x) -D.f (x) dy. .
1
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So the process may be realised by the SDE

dxr =Y(xr-,Y) (N~-~) (dYldt) .

Take )) E C ~ (R) with ~(x ) = x v (---~) except in a small neighbourhood of -~, take
y(x ) = x - ~ (x ) and h E with h --- 0 near l, h ~y ) = near ~. The hypotheses of
Theorem 1.2 are satisfied by the graded system

~r (dy,dt) ~

dKt = S (xt_) Kt- dt + 03C6(D 1 Y (xt_,y)) Kt-(  - 03BD) (dy,dt) ,

~

(xo~ 1~~) ~

where

~ 
’

E

and by the perturbation

v(t,y)=
(1 + 03C6(D1Y(xt-,y))) Kt-h(y)-03C8(D1Y(xt-,y)) Kt- Ht- D2Y(xt-,y)

.

It is easily checked by substituting in the SDE for the derived process that Dxt = KtHt.

We arrange that 1 + ~( D 1 Y ( x, Y) ) >_ 1 2 for all so the SDE

dLr (1 + G (af)) dt
E

Lt_(1 + ~(D ~(D (~-v) 

Lo = 1,

has a unique solution with n LP (P). Moreover d (KtLt) = 0, so Lt = We have
p~~

G (h >_ e) - as e -~ 0, so by Lemma 2.1

for all 0  t S 1. (2.24)

It follows by a limit argument that the function
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may be integrated by parts to give

IE[Df(xt)]=IE[f(xt){K-2t DKt Ht+K-1t DHt H2t-K-1t Rt Ht}], (2.25

where

(dy,dt) , R 0 = 0 .

The proof of (2.23) is completed by finding suitable bounds in L 1 (1P) for the three tenns
inside the curly brackets. There are constants C, a such that for all t >_ 0

I DKt I 2 _ Cte 2~

IE(K-2t R2t) ~ Cte2at .

_ 

1
This together with (2.24) gives a bound of the form Ct for the first and third
terms.

We consider the second term. There exists an increasing process A t with

lE(A (t~)  C(p) 

for all p  ~ , such that

I Dh (y) v(t,y) I S A (t) y-2’~’+a~~ . .

So |DHt | _ A (t) Qr where

dQr = k CY ) v , Q o = 0

and k (y) Fix q with 1  q  ~. We have
Y+~

= r(p)t J ~~-1 e~(~)r ~ (a) d a
o

where

03BE(03B2) = l (1-e-03B2h(y)) dy ,

~(03B2)= k (y) e-03B2h(y) dy .

1
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1
But ~(~3) ? 8~i y - c for some ~,c (see proof of Lemma 2.1) and

~ (~i) _ - 2+ 1 ~ (a"+1) + c’ for some S , c  ~. So

J ~ 2 q -1 (S ~ ~ -2+ 1 ~ (a +1) + d ~3
o

so by a substitution ~3’ = t" P we get

IE(QtH-2qt) 1/q ~ Ce at t-203B3+1 q(203B3-03B1")

~ Ceat t-203B3+03B3+1 2

by our choice of q. Hence, if 1 + 1 =1
p q

lE ) 1 

Hr 
1 F t 

t

~ Ceat t-03B3+1/2

for some C, a  oo. Finally for 03BB > a by (2.25)
IEe-03BBt Df(xt)dt ~ 3C~f~~ e-(03BB-a)t t-03B3+1/2 dt

~ 3C ~f~(03BB-a)-03B3+3 2  e-s s-03B3+1 2 ds  ~.
o
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