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RIESZ TRANSFORMS : A SIMPLER ANALYTIC PROOF

OF P.A. MEYER’S INEQUALITY

by Gilles PISIER

INTRODUCTION.

The aim of this note is to give a rather simple analytic proof of

the following inequality due to P.A. Meyer CM1]. For 1  p  ~ , there

are positive constants K ,K’ such that for all n and all polynomials
f on Rn 

P P

K p « L1/~f ~ ~ K p ~~ L1/2f (p
where L is the generator of the Ornstein-Uhlenbeck semi-group and

the L -norm is with respect to the canonical Gaussian measure Yn on

~n . A different proof has already been given by Gundy Our proof
is different. We simply use a transference argument to show that the

boundedness of the "Riesz transforms" -2014 L 1/2 can be deduced from
ax.

that of the one dimensional Hilbert transform.

This approach also gives a different proof of some classical (one

dimensional) results of Muckenhoupt [Mu] but (as usual in this context)

the case p = 1 cannot be handled efficiently although in [Mu] it is

proved that (in dimension one) the operator ~ ~x L-1/2 is of weak

type (1,1).
In § 1, we quickly give a proof of the classical case (Rn here

is equipped with Lebesgue measure and L is replaced by the Laplacian),
In § 2, we prove the inequality in the Gaussian case as stated abo-

ve. We note in passing that since Kp,Kp are independent of the

dimension and since y makes sense also for n = ~ , , we might as

well state it as an infinite dimensional inequality on ~ equipped
with its canonical Gaussian measure.

In fact this infinite dimensional formulation is the main motiva-

tion for the study of such inequalities in the context of the
"Malliavin calcul.us".

Notation : Let  be a positive measure on Rn and let f : IRn ~ R

be differentiable . We will always write ~ grad f ~Lp( ) instead

of ( (03A3 |~f ~xi|2)p/2 d )1/p.
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§ 1. THE CLASSICAL CASE.

The classical Riesz transforms are defined as follows for a

smooth function f (say) in 

(1.1) (Rk f) (03BE) = i 03BEk 1/2 (03BE) (k = 1,2,...,n) .

Equivalently we have "symbolically"

Rkf = ~ ~xk (1 0394 f)
where we have denoted by the coordinates of a point x

in IRn and where

0394 = -  ~2 2 ,
k=1 

clearly we have dx = dx .

Similarly, by Parseval’s identity, one checks easily

fl2 dx =  > ~ 
= ~~ grad f ~~2 2 dx

or equivalently after polarization

(1.2)  0394f, 0394g >L2 =  grad f,grad g > dx

for all f and g in S’(Rn) .
The classical Riesz transforms inequalities in L are the

following.

THEOREM 1.1. If 1  p  ~ 
, there are constants Cp,Cp such that

for all f in we have 

(1.3) 1 C’p ~ f ~p ~ ~( |Rkf|2)1/2~p ~ Cp ~ f ~p .

Of course, this extends to f in L p eRn) by density, we will usually

ignore such matters in the xequel.

Recently, E. Stein [S] discovered that the best constants .C P ,C’ P
can be bounded above independently of the dimension n . Actually,

this phenomenon can be viewed also as an immediate consequence 
of an

earlier probabilistic proof of (1.3) due to R. Gundy an N. Varopoulos

[GV ] .

Alternate proofs of ( 1 . 3 ) have been given in [DR] ] and [Ba] ] (with

constants independent of the dimension).

Although this is not the object of the present note we will give

below a proof of (1.3), to be compared with that of § 2. We use a simple
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"transference argument" in the sense of and Gaussian measures.

In the case n - 1, the Riesz transforms reduce to the Hilbert

transf orm

Hf (x) - ~ p.v. f (x - t) .

By "transference", we will show that the boundedness of H on 

impl ies ( 1 . 3 ) f or any n .

We will use ~tn x Rn equipped with the product dx of the

Lebesgue measure dx1 and the canonical Gaussian measure

exp - ~ 2 (E n 1 y2) k dy 1 ...dy n (2~r) _ n/2 .
The transformation " Lp (dx) -~ Lp Yn (y) )

defined by (x,y) - f(x + ty)

is clearly an isometric embedding.

By a simple transference argument (cf. [CW]), the transformation

= p.v. ~-~ Rt dt t
is also bounded from L p (dx) into L p (dx dYn(y)) with norm

II H II  K 
P

where p is a constant bounding the norm of H (or rather the

truncated versions of H) on Lp . In particular, we have

G (p) and K E 0 1 when p ~ 1 .

We will also use the orthogonal projection from onto the

span of yl,...,yn . We denote this projection by Q .

Let Y(p) _ e -t~/2 .

~’e claim that (this is a well known fact)

(1 .4) if 2  p  ~ d f E Lp(Yn(dy)) I( Qf (Ip  Y(p) II f IIp r

and corisequently by duality

(1 .4)’ if 1  p  2 I) Qf I~  Y (p’ ) (I f I[ .
Indeed, since any linear combination of independent Gaussian variables
is again Gaussian, we have (if 2  p  ~)
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~~ Qf lg = y (p) ~~ Qf ~~2

~ y(p) ~~ f II2

_ Y (p) ~~ f )9 , I
therefore ( 1 .4 ) is immediate.

Proof of theorem 1 .1 . :

We can view theorem 1.1 as a consequence of the following formula,
valid for any f (say) in L2(dx) .

(1 .5) ) Qy 1 ~r P .v. . f (x + ty) = (2/~r) 1/2 n 1 E Yk R k f (x) ( I
where we have denoted by Qy the operator I ~ Q acting on

L2 (dx .

This formula immediately implies ( 1 . 3 ) . Indeed we deduce from

(1 .5) , (1 .4) > and (1 .4)’

~~ E Yk It 
p 
(dx dy 

n 
(y) ~ (’~/2) 1 /2 ~~ Q ~ It 

p 
L 

p 
~~ ~ ~p

’ ~ > ~~ 

On the other hand, we have clearly for any (Àk) in ~tn

Hence Il P (dy n (y» 
= (E 

~ (E R k f (x)’2) 1 /2 ~ ~L p (dx) - Y (p) ~1 ~~ II E Y k 

~ ( ~r/2) 1 /2 K max 1 , Y--~-~. ~ ~~ f ~
Thus we obtain the right side of (1 .3) with C E O(p) when p 

and C 
P 

E 0 ( (p-1 ) 3/2) > when p ~ 1 . 

P 

,

The left side of (1.2) follows from the right side by a well

known duality argument based on (1.2).

Finally, the identity (1.5) is easy to check using Fourier trans-

forms in the x variable.

Indeed, let F = °°§°if . The Fourier transform (with respect to x)

of F (x,y) computed at 03BE ~ IRn is equal to i sign (03BE(y)) > (03BE) .

(This follows using (1.1) for n=1 ) .

On the other hand, by symmetry sign(~(y)) is clearly orthogonal

to (~(y))1 , hence

Q(sign(03BE(y)) = 03B1 03BE(y)

with 03B1 =  03BE(y) ~03BE(y)~22, sign(03BE(y)) > = ~03BE(y)~1 ~03BE(y)~22 
= 03B3(1) ~03BE~2.
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Since = ( 2/~r) 1 /2 , we find the Fourier transform ( in x ) of

QHf equal to 
12 

f(~) . . Since by ( 1 .1 ) this is clearly

the Fourier transform in x of the right side of (1 .5), this proves

(1.5).

Remark : The preceding proof is close in spirit to the proof of [DR].

§ 2. THE GAUSSIAN (OR ORNSTEIN-UHLENBECK) CASE.

Motivated by the "Malliavin calculus" and related estimates of the

Ornstein-Uhlenbeck semi-group, P.A. Meyer proved the following result.
Here again y is the canonical Gaussian probability measure on Rn .

THEOREM 2 . 1. : I MI ]

If 1  p  oo there are constants K and K’ such that for
all n for all f in L

p (IRn,03B3n) 
we have

(2.1 ) K p r ~~ l ~rn ~ ~ !! 

where L is the generator of the Ornstein-Uhlenbeck semi-group

L = 0394 - xi ~ ~xi

Note that if ha (x) - h a 1 (x1 ) (a = (03B11,...,03B1n)~INn)
is a Hermite polynomial in n variables, then we have

Lha - ha with ~a~ - a1 ’ + +...+ a n .

Indeed, this is easy to check using the classical identity

E R exp {03BE(x) -  II 03BE ~22} = E ’a,"- 03BE03B1.
a 

°

We refer the reader e.g. to [N] for examples of the use of this
formula.

It is well known that is a semi-group of positive
contractions on .

The analogue of (1.2) in the Gaussian case is the following :
For all f in L2(Yn) we have

~ 

 Lf,f >L (~ ) - j grad f,grad f > Yn(dx)
hence after polarization for all g in L2 ( Yn)
(2.2) Lf, Lg >L

2 (03B3n) =  grad f(x),grad g(x) > 03B3
n 
(dx) .

This again shows that the right side of (2.1) (for p) implies the
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left side of ( 2 .1 ) (for p’ ) . Hence it is enough to prove the right
side of ( 2 .1 ) .

Recently, R. Gundy gave a simpler proof of P.A. Meyer’s inequality
[G] based on previous work of Gundy-Varopoulos [GV]. Both Meyer’s and

Gundy’s proofs are probabilistic.
We will give below a rather simple analytic proof based on trans-

ference of a perturbation of the one dimensional classical Hilbert

transform to the n dimensional (or infinite dimensional) Gaussian

case. We will again work in Rn x Rn but this time equipped with

the measure x yn (dy) .
This measure is invariant by the "rotations"

(x cost + y sint,-x sint + y cost) .

Therefore f + fo Rt is a measure preserving group of isometries of

Yn) . °
Our proof will be very similar to that given for the classical

case in § 1 .

In the Gaussian case, we will replace formula (1.5) by the follo-

wing formula which is the crucial point for the proof of (2.1 ) . For

any f in L2(Yn) with mean zero we have :

(2. 3) Qy [p.v. 03C0-03C0 (x cost + y sint) 03C61(t)dt 203C0] = 2 (203C0)-1/2 yi Di(1 L f)
where p.v. means "principal value", and where cp1 is a function on

the circle group IT which does not depend on n and satisfies

(2.4) cp1 (t) - E °

A fortiori cp1 (t) - cot(t/2) E L1 (dt) therefore the operator T~
(convolution by cp ) differs from the Hilbert transform (on 

1

the circle group) by an operator which is bounded on Lp for all

1  p  ~ . . (More generally, for any Banach space B, the operator

T03C61 -H is bounded on Lp (B) for all 1  p  ~.) Therefore, the

boundedness of 
1 
will be an easy consequence of the boundedness of ~°.

To prove the boundedness of the operation between brackets in

(2.3) we will use an elementary transference argument, as follows

(cf. [CW], cf . also [M2 ] ) .

LEMMA 2.2. Let I  p  ~ and let k be in .

Let Tk: : Lp (IT) + Lp be the operator of convolution by k ,

i.e. = f * k . We denote its norm on simply by

~ Tk ~p . Then for any g in Lp(Yn x 03B3n) we have
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(2.5) ~ g(R+(x,y))k(-t)dt ~Lp(03B3n(dx)03B3n(dy)) ~ ~Tk ~p ~ g ~Lp(03B3n 03B3n)

In particular, for any f in Lp (ynJ we have

(2.6J ~~ T k ~ ~p (~ f (~ J 
.

Proof : : By successive integrations and Fubini’s theorem, we have

obviously

(2.7) ~~ k(t) dt ~~ ,~ g .

but since RS preserves the measure y x y

2 g(Rs-t) k(t) dt ~Lp(03B3n 03B3n) = ~ g(R-t) k(t) dt ~Lp(03B3n 03B3n)

hence ( 2 . 7) implies ( 2 .5 ) .

Moreover, (2.5) implies (2.6) by setting

g(x,y) = f(x) . q.e.d.

It is well known that Lemma 2.2 extends to singular integrals
(i.e. k ~ L1) by a suitable approximation. Let us consider in parti-
cular the Hilbert transform on the circle

 03C6 ~ Lp(II) 03C6(s) = |t|~~03C6(s-t) cot(t 2) dt 203C0
or in short

= p.v. 03C6(s-t) cot(t 2) dt 203C0 .
Actually, in our specific situation, we do not need to invoke the
classical approximation of a general multiplier by a compactly suppor-
ted one ([CW], see also [M2]). We use instead the following result.

LEMMA 2 . 3. For all f in , the integral

p.v. cost + y sint) cot(t/2) dt exists for a. e. (x, y J and

we ha ve :

(2. 8) ~p.v.03C0-03C0f (x cost + y sint)cot(t/2)dt 203C0~ 
Lp(03B3n 03B3n ~~H~p ~ f ~Lp(03B3n).

Proof. Let w(t) = x cost + y sint. By Fubini’s theorem
.dt for a.e. (x,y) , hence the integral

p.v. 03C0-03C0 f(03C9(s-t)) cot(t/2) dt
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exists for a.e.s.

Note that for each s have the

same distribution. Therefore if we let

{(x,y)~ I p.v. cot(t/2) dt exists} ,

we must have p(s) independent of s. But by Fubini’s theorem

fp(s) ds = 1 .

This implies that p(0) =1 , , and (2.8) follows exactly as in
Lemma 2.2. q.e.d.

Actually, we will work with a convolution operator T 

°I 
which

is a "perturbation" of the Hilbert transform on the circle, given
by the next lemma.

LEMMA 2.4. There is an odd function on such that

co~re/2; E and such that

r~.~; v ~ ~ o ~-=2~2~;"~~~ ~-~-~~~~
More generally, for every , there is an odd

function 03C6k on t-ir,-rr] such that - E 

and such that

f2.~ v ~ ~ o ~fe~~~r~.r’~ r~~-~;’~~
where Ak = 2 ~xk-1 exp -x2 2 dx/(203C0)-1/2 .

~ "

(In other words, Ak = 2 xk-1 03B31(dx))

Proof. We start from the identity

Ak = 4 ~0 tk-1 e-t2/2 dt (203C0)-1/2.

Changing t to we obtain

(m+k)’~ A, = 4 f: exp -[(m+k) t~/2] dt(2~)"~~ .

Again, using the change of variables defined by cos03B8 = e-t2/2 or

equivalently setting = (2 Log 1 ~) ’ 1 /2 , find by 
tiation - sine de = -t(e) cos03B8 dt(e) .

Hence (203C0)1/2 (m+1)-k/2 Ak = 4 

03C0/20 
(cos03B8)m+k t(03B8)k-1 

sin03B8 cos03B8 d03B8 t(03B8)
.

Therefore if we define

~k~ = ~~’’’ 
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and ~k ( e ) =0 for 8 E ~ -~r, -~r/2 l U [~/2,~] , ,

We obtain (2.10)as announced. In particular, we have (2.9).

If k=1 , we have t ( 8 ) -~ ~ when e ~ 1T /2 hence cp1 ( e ) > -+ 0 .

Therefore the only discontinuity of cP1 is at 8 = 0 . But in the

neighbourhood of 0, it is easy to check that therefore

~1 (e) - 2 e + ~ 1 (e)
with ~« (6) bounded in the neighbourhood of zero. This shows that

cP1 (0) - cot(e/2) E Since tg(0) - 8 when 8 -~ 0 , the

function cPk(6) - 2/8 also remains bounded in the neighbourhood
of 0 . Since cPk ( 6 ) is also bounded in the neighbourhoods of ’fr/2

or --~/2 ~ we conclude that

~k(6) - ~OkI6) - cot(e/2) E .

This concludes the proof.

Clearly we have

COROLLARY 2. 5. Let ~,~ be as,above .

!t, .

In particular, we have

either when p -~ 1 or when p + ~ .

We can now give the

Proof of theorem 2 .1 . : : Let f be in L2 ( Yn) . We first note the

elementary formal identity

(2.11) 1 L+1 Dif = Di = [1 Lf]
for smooth functions with mean zero (i.e. fdy = 0) . Indeed, ’ this

is easy to check on Hermite polynomials. Consider for example the
case i=1, and let 

We have

h03B1 = h03B11 ~ h03B12 ~.....

D1 h03B1 = 03B11 h03B11-1 ~ h03B12 ~....
1 L+1D1 h03B1 = 1 |03B1| h03B11-1 ~ h03B12 ~.....
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while on the other hand D1(1 L h03B1 ) = D1(1 |03B1| h03B11 ~... )

= 1 |03B1| 03B11 h03B11-1 ~ h03B12 
~.....

More generally, the preceding well known calculation shows that sym-
bolically we have

Di F (L)

for any "function" F .

Let us check now the crucial identity announced above as (2.3).
The proof goes through an expansion in Hermite polynomials of

f(x cost + y sint) as a function of y . Let us recall how to compute
the coefficients of such an expansion.

Consider a function g in 

Then g(y) = E g h~(y)
for coefficients  g, ha > . « 

1 
for the scalar

product of We have  > = a ! i where a ! - a1 ! I a2 ! i...a i .
There is a convenient formula for g which will be handy in the

proof, namely the following

ga = (a ! ) - 1 Y  (dy) . 
_

(Here means (~ / 3 B a~ ~~ / 3 "B a- ...) .

For instance, we refer the reader to [N] p. 155.

Applying this expansion to f(x cost + y sint) we obtain

(2.12) f(x cost + y sint) = E ha (y) Fa (x, t)

where F03B1 (x,t) = (03B1 ! )-1 (~03B1 ~03BE03B1)03BE=O f(x 
cost + (y + 03BE) sint) 03B3n(dy)

hence (at least for f sufficiently smooth

(2 .13) F a (x,t) = (a ! ) 1 I (x cost + y sint) y n (dy) . .

We now introduce the "Mehler kernel" (or equivalently the Ornstein-

Uhlenbeck semi-group). Let Pk be the orthogonal projection from

L2(Yn) onto the span of the Hermite polynomials of degree k in

(x1,x2,...,xn) . For a function g = 03A3 g03B1 h03B1 in L2(03B3n(dy)) , we

define

Lg = 03A3 |03B1|g03B1 h03B1 (i.e. L = m Pm)

for all t ~ 0
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e-Lt g = 03A3 e-|03B1|t g

03B1 
h

03B1 
(i.e. e-Lt = e-mt 

Pm)

and T(~)g = 03A3 ~|03B1|g03B1 h03B1 for ~ ~ [-1,1] .
Hence T ( £) - ~ £m pm ’

m>O 
~

We also use the classical "Mehler formula"

[T(~)g](x) = g(~x + (1-~2)1/2y) 03B3n(dy) .

(Note : this formula is easy to check on the total set of functions

{03C603BB} defined as

 03BB,x ~ IRn 03C603BB(x) = exp { 03BB,x > -  ~ 03BB ~22} = 03A3 h03B1(x) 03B1! 03BB03B1) .
Then we can rewrite (2.13) as

(2.14) F03B1(x,t) = (03B1 !)-1 (sint)|03B1| [T(cost) D03B1]f(x) .

We claim that if f is mean zero and if |03B1| = 1

(2.15) 03C0-03C0 F03B1 (x,t) 03C61 (t) dt 203C0 = a (D03B1 1 L) f(x)

with a = 2(203C0)-1/2 .
Indeed, let g - D af . We have T(cost)g = Z (cost) m P 9 . Hence

by (2.9) m>0 
m

sint T(cost)g 03C61 (03B8) d03B8 203C0 = a 03A3 (m+1)-1/2 Pmg

= a (L+1)-1/2g .

Using (2.11), this immediately yields (2.15).

Let us define 03B1(x) = 03C0-03C0 F03B1(x,t) 03C61 (t) dt 203C0 .

We have clearly by (2.12)

p.v. (x cost + y sint) 1 (t) dt 203C0 
= 03A3 h03B1(y) 03B1(x) ,

hence by definition of Qy

Qy [p.v. f(x cost + y sint) 03C61 (t) dt 203C0] =  h03B1(y) 03B1 (x) ,

hence by (2.15) 

=  yi a Di 1 L f(x)

where D. denotes here 
03B8xi .

Thus we have checked the crucial identity (2.3).
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It is now easy to conclude exactly as in section 1. We have

~! (E i , )

hence by ( 2 . 3 )

~ ~ Q )L ~p.v. f(x cost + y sint) 03C61 (t) p ( Yn Yn1

hence by lemma’ 2.3 and lemma 2.2 (or corollary 2.5)

~ )L ~~ ~1 ~~1 ) (y ) ’
*- *- p n

This yields the right side of (2.1) for every 1  p  °o , and the

left side follows by duality.

Remark : : The preceding proof yields the following bounds for the

constants in theorem 2.1 when p -~ 1 or p -~ ~

K E 0( ~ 3~2) , ,P ( p-1 ) 
~~~ ’

exactly as in the first section.

This estimate is perhaps an improvement over the previous proofs

of [M ] ] or [G].

By routine arguments, this yields

COROLLARY 2.6. There is a constant K such that for all n and

all polynomials f or , we have

~ grad f ~L1(03B3n) ~ K ~ L1/2f ~ 
L(LogL)

3/2 (03B3n)

(~ L3/2f ~~ L1 ~Yn~ ~ K ~~ I grad 

where we have denoted simply by L(LogL)03B1 the norm in the Orlicz

space associated to the function = .

Remark : : We briefly consider here the case of the higher order Riesz

transforms.

’ Let Qk be the orthogonal projection on yn(dy))
defined by where I denotes the identity on L2(Yn(dx»
and where Pk is viewed as acting on In other words, Qk
is the orthogonal projection from L2(Yn x Yn) onto the space of all

functions which are in the "Wiener chaos" of degree k with respect

to the variable y .
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Let  k be as above, with k > 1 an odd integer. By the same

argument as for (2.3), we have

(2.16) Qk [ p.v. 
03C0-03C0 

f(x cost + y sint) 03C6k(t) dt 203C0] = ak  (03B1!)-1

h03B1(y) D03B1(L-k/2f)

where ak = (2’IT) 1 /2 
~k ’

We note for p > 2

(2.17) V f E ~~ Pkf ~) ~~ f 

On the other hand, by the hypercontractive inequality (cf. [Gr]) we

have

~~ Pkf (p-1) k/2 ~~ Pkf f .

By duality, this implies

(2.18) (p-1 ) kl2 ~‘ (p’’1 ) ki2 ~~ f 

Let us define, for all f in Lp(03B3n) (assumed sufficiently smooth)

Gk(f) -( (03B1!)-1 |D03B1(L-k/2f)|2)1/2.
Then, (2.16) implies with (2.17) and (2.18) if 1  p  ~

(2.19) ak ~f _ l) T ~~p C(p~k) If f )g
where C(p,k) =max {1,(p-1)"~~} . ~

In [Ml], Meyer considers the "iterated gradients"

E D i2 ...D ik f I 2
1~ij~n

Obviously 0393k(f,f) ~ 

|D03B1f|2 
a! .

Hence

r k (f~f) 1/2 -  (k ~)k Gk ( f) .

Therefore, (2.19) implies

(2.20) ~~ r k (f,f) 1/~ ~ (p -  K(p,k) II f L if 1  p  ~ , ,

where (by corollary (2.5)) ( ~~ o~’o ~ ~p + ~) ,~ k (~ ’1 1 C (p, k) .
In particular, we note that for each fixed k (odd) we have

K(p,k) E 0(p) when .
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This seems to be an improvement over LM1].

As an immediate consequence, if k is a fixed odd integer there

is a constant 8k depending only on k such that

1 ~ fexp ok rk(f,f) 1/2 2 .

When p + 1 , we obtain K(p,k) E 0 ( (p-1 )’1-k/2) .
When k is an even integer,one can probably use a different calculation

analogous to that done in [DR] to obtain similar inequalities, but

with a weaker bound for the constants K(p,k); we did not check it.
We should also point out that the inequality (2.20) can be reversed

if f satisfies (P- + P1 + ... + Pk) (f ) - 0 . For a simple proof of
this, we refer the reader to [M1].

Remark : : If we use the Hilbert transform instead of T ~ , , we

obtain the following inequality 
1

~ grad f Bp ~ Af ~p (1  p  ~) (Bp = 

where A = E 0 = m P, with am defined as the sum of m i.i.d.

random variables E1 , ... , sm such that = 1) = P ( ei - -1 ) - 1 /2
(i.e. we define 03BBm by am =E I .) Note that (by the Central

limit theorem) 03BBm m-1/2 ~ (2/03C0)1/2 when m ~ ~ . This suggests that

one can pass from A to (03C0/2)1/2 L by a perturbation of the

identity bounded on all L -spaces. Using explicit formulas for am
which we found in [H], we have indeed convinced ourselves that this

is correct, but this proof is not so direct and elementary as the

preceding one.

Remark : Theorem 2.1 clearly extends for functions f with values

in a U.M.D. Banach space B in the sense of See [Bo] for

closely related information.

The inequalities remain valid in that case provided we replace

~ grad f h by the following expression 
’

1 03B3(p) ~ yi ~f ~xi(x) ~Lp(03B3n  03B3n,B) .

A similar remark applies of course also in the classical case of § 1.

Remark : The idea used in the proof of theorem 2.1 originates in fP]

(chapter 2) where a weaker form of the left side of (2.1) is established

for functions with values in an arbitrar Banach space. I am grateful

to Michel Ledoux for stimulating conversations which made me return

to the subject of this note.
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Final Remark : It is natural to try to extend the above method to the

case of compact Lie groups and Riemannian manifolds. It would be

interesting to prove (under suitable assumptions) analogous inequali-
ties with constants independent of the dimension. For instance, we

refer the reader to the papers of Bakry [B1][B2] for various results

of this kind.

The "main idea" of our proof carries over in a very general setting.
We can describe it as follows :

Let M be a compact connected Riemannian manifold of dimension n .

Let T(M) be the tangent bundle. For each x in M, we consider the

canonical Gaussian measure ~x on Tx(M) , then we denote by  the

measure dx dyx(y) on T(M) . (Here we denote by dx the normalized

surface measure on M). By a classical result of Liouville, the

geodesic flow on T(M) leaves the measure w invariant.

Hence, for any f in Lp(M,dx) we may consider the function

(2.20) g(x,y) = p.v. (03C6t(x,y)) dt t , where (x,y) = f(x) .

By transference, this function g belongs to L p () (1  p  

Moreover, we can project g(x,y) orthogonally onto the space of all
n

functions of the form gi(x) yi . This defines a projection Q

which is bounded in Lp( ) (1  p  oo) for the same reason as above.

However, except in simple cases (such as the Euclidean sphere,
which is known to be very similar to the Gaussian case) we have not

been able to compute explicitly the resulting operator, or to modify
the singular integral (2.20) in order to obtain something nice (after

the action of Q), as in (2.3). Nevertheless, we believe that this
should be possible.
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