
SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

DAVID NUALART

MOSHE ZAKAI
The partial Malliavin calculus
Séminaire de probabilités (Strasbourg), tome 23 (1989), p. 362-381
<http://www.numdam.org/item?id=SPS_1989__23__362_0>

© Springer-Verlag, Berlin Heidelberg New York, 1989, tous droits réservés.

L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail.
mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou im-
pression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SPS_1989__23__362_0
http://portail.mathdoc.fr/SemProba/
http://portail.mathdoc.fr/SemProba/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


THE PARTIAL MALLIAVIN CALCULUS

David Nualart
Facultat de Matematiques
Universitat de Barcelona

Gran Via 585
08007-Barcelona, SPAIN

Moshe Zakai
Department of Electrical Engineering

Technion - Israel Institute of Technology
Haifa 32000, ISRAEL

1. Introduction

The notions of the partial Malliavin calculus were first introduced by Kusuoka and Stroock for the
constant case (i.e. projections are taken on a fixed Hilbert subspace) and applied by them to prove
regularity results in non-linear filtering theory. The theory of the partial Malliavin calculus has been
developed in a different framework by Ikeda, Shigekawa and Taniguchi [4], in order to complete in
detail the proof of some results of Malliavin (cf. [8]) on the long time asymptotics of stochastic oscilla-
tory integrals.

The purpose of this paper is two fold, the first is to present an exposition of the approach of
Ikeda, Shigekawa and Taniguchi [4] including some extensions and generalizations and the second is
to derive conditions for the existence and smoothness of a conditional density under conditions which
are more general than those considered previously.

In the next section we introduce the partial operators and and following [4], we
derive some properties of these operators. These operators are associated with a projection on a
(possibly random) Hilbert subspace ~l. In section 3 the subspace 9f is assumed to be the orthogonal
complement of the Hilbert space induced by DGi , a >_ 1 where , i > 1 } is a sequence of
smooth random variables. The conditional integration by parts formula of [4] in this setup is derived in
section 3. Sections 4 and 5 include new results (theorems 4.2 and 5.1 ) on the existence of a condi-
tional density under relatively weak assumptions, these results were motivated by the results of

Bouleau and Hirsch [3]. Conditions assuring the smoothness of the conditional density are discussed
in section 5 (theorem 5.7), these results are based on the approach of [4] and [5]. The paper is con-
cluded with an example related to the conditional law in the nonlinear filtering problem illustrating the
direct applicability of the results of the earlier sections to this problem. This result states, very roughly,
that for the one-dimensional nonlinear filtering and smoothing problem the existence of a non-

conditional density implies the existence of a conditional density. It is also pointed out that the previ-
ously known results of Bismut and Michel [2] and of Kusuoka and Stroock [6] follow from the general
approach presented here.

The rest of this section is devoted to establishing notation and to summarizing some basic results
related to the Malliavin calculus. For a more detailed exposition of this subject c.f., e.g., Watanabe
[11], Ikeda-Watanabe [5] or Zakai [12].

Let I~ be a real separable Hilbert space. Suppose that W = { w (h ) , h EH } is a Gaussian

process with zero mean and covariance function given by E (w (h )w {g’ )~ =  h g > , defined in
some probability space ). Here  h g > denotes the scalar product in 1‘~ . We also
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assume that F is generated by W. .

Let E be another real separable Hilbert space. An E -valued random variable F : will

be called smooth if

M

F=E~(~~i)---~(~))~ ’ ~
i=1

where fi~C~b (IRn), h 1, ... , vMeE .

Here (Rn) denotes the set of C°° functions f : which are bounded, together with

all their derivatives.

The operator D is defined on E -valued smooth random variables as follows

M n

DF= 03A3 03A3(~jfi)(w(h1),...,w(hn))hj ~vi .

i=1 j=1

That means, DF can be considered as an element of L 2(~ ; H ®E ). By iteration we introduce the
N-th derivative of F , , DN F, which will be an element of L2(~ ; H ®E ).

We also define the operator L by
LF = (~jfi)(w(h1),...,w(hn))w(hj)vi - (~j~kfi)(w(h1),...,w(hn))

i=1 j=1 i=1 j ,k=1

.  hj ,hk > vi . .
In terms of the Wiener-Chaos decomposition, L coincides with the multiplication operator by the factor

n. .

Let F be a E -valued smooth random variable. For any p > 1 and k e R we set

, >

and we denote by (E) the Banach space which is the completion of the set of smooth function-
als with respect to the norm (1.1). Set = 

p n ,k (E ) and = 

p u ,k (E ).

is the Fréchet space of tests random variables and is its dual. For E = IR we will

simply write for ( R) .

The following equivalence of norms, proved by Meyer [9], provides a basic tool in studying the

properties of the Sobolev spaces :

The Meyer inequalities: For any p > 1 and any positive integer k , there exists constants

ap ,k , Ap ,k > 0 such that

ap ,k II Dk F ~Lp(03A9;H~k ®E ~ ~F~p,k ~ Ap,k[~F~Lp(03A9;E) + ~DkF~Lp(03A9;H~k ®E)
for any E -valued smooth functional F . .

We introduce the operator b, defined on H-valued smooth functionals
G = g (w (h 1 ), ... , w (hn ))h as follows

n

s(G ) =g (w (h 1 )~ ... w(hn))  hj ~h > . (1 .2)
j =1

Notice that b(G ) is a real valued random variable.
Finally we recall the following basic properties of these operators:
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(1) > The chain rule : If F = (F 1, ... F m)E (Rm ) is a C 1 function with
bounded partial derivatives then

m

. ( 1 .3)
i=1

(2) The integration by parts formula: If G and F are smooth random variables taking values in H
and R, respectively, then:

E(G,DF>)=E(8(G)F) . . (1.4)
This means that b is the dual of D . If we denote by Dom 8 cL2(Q;H) the domain of the operator b
considered as the dual of the unbounded operator D on L2(S~) (with domain ~2,1), then formula
(1.4) holds for any F E and G E Dom S.

(3) LF = 8DF for any F in the domain of L as an operator on L ~(Q).

2. The operators D H, and L H associated with the projection on x.

Let H be a real separable Hilbert space and W = { w (h ) , h E H } a Gaussian process as
defined in the previous section. Consider a (possible random) collection ~f = { K(w) , c~ S2 } of
closed subspaces K (w) of H parameterized by co, with a measurable projection. That means, we

suppose that for any h E H the projection is a measurable function of co taking values in H .
Namely, for every g in H, the scalar product of g with the projection of h on is a real valued
random variable. Notice that this implies that for any H-valued random variable
F : (w)) : is measurable. In fact, if { ei , , i >_ 1 } is a C.G.N.S. on H, ,
we have F = L  G ,ei . > and = L  F,ei > . We will denote the random

i 
~ ~ 

i

variable (co)) by .

Definition 2.1. . We define the partial derivative operator DH : as the projection
of D on ~f, namely, for any F E ID2,1,

.

Some properties of this derivative: .

(1) ) Let F = f (w (h 1 ), ... , , w (hk ) be a smooth functional. Then
k

, and
i=1 

.

k

D~=~o~)(~(~i)....~(~))n~ . ~ .

i =1

Note that for any h E H we have
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H , = DF, K > = d d~ | £=o .

(2) The chain rule. Let Fi,.... and ~m a continuously differentiable

function with bounded first derivatives. Then and

m

.

i=1

In fact, it suffices to project the ordinary chain rule for the derivative operator.

It is well known that D is a closed operator on The assumptions of [4] assure that this
remains true for D H however we do not know whether this holds under the assumption of this paper.
A convenient sufficient condition for this is the following lemma.

Lemma 2.2. If 03A0Hh e Dom S for all h e H then D H is a closed operator on 

Proof: For anyFe ~2,1, we can write using integration by parts
.

m

More generally, for any smooth H-valued random variable G : like G = ~ ~i we

i=1

have e Dom 6 (since 03A0Hhi were assumed to be in Dom 8, and the 03BEi are smooth), and

(2.1)

This implies that D H is closed since

Fn L2{Q.) 0 , i

’ 

=~ ’11= 0 .

D > q

In fact, setting F = Fn in (2.1 ) and letting n ~oo yields the result. 0

The converse of Lemma 2.2 is not true. Set, H = { x(CO) , 03C9 ~ 03A9}, where

K(03C9)=H if w(e) ~ 0 , and where e is an element of H of norm one. For any h EH the
e > i f w (e ) > 0 ,

H-valued random variable = h -  h ,e > 1 { w (e ) > o } e does not belong to Dom S, if

 h ,e > ~ 0; to see this, note that if 1 { ~, (e ) > o } e e Dom 8 then, if F is any smooth functional
which vanishes in the set { ~ w (e ) [ _ ~ } and F = 1 on { ~ w (e ) ~ I > 2E } then

F 1 { w (e ) > o } E and ~(~~{M;(e)>0})=~~ ’ ’ 1 { w (e ) > o } . Consequently, we have by
integration by parts (equation 1.4) that



366

l

=E’ ~De(F’ 1{w(e)>o})~=E’ ~F1 {w(e)>o}w(e)J, , 
.

which for e small enough yields E S(1 { w (e ) > o } e ) > 0 which is absurd since E 8 = 0. (cf. [10]).
On the other hand, D H is a closed operator in this case. In fact, suppose that {F n , n >_ 1 } , is a
sequence of functionals of converging to zero in L2(~2), and such that

D = DFn -  DFn ,e > 1 { w (e ) > 0 } e ’

Suppose G is a H -valued smooth functional and let R-~ R be a C °° function such that
= 0 if x  0, , >_ ~ > 0. Then using integration by parts and the above limit we

deduce that E (  > (e ))) = 0 and E (  > (e ))) = 0, which implies 11 = 0.

Definition 2.3. Set Dom 8x = { u E L : Ilxu E Dom 8 } and for any u E Dom 8x, set
03B4Hu = 03B403A0Hu..

With this definition we have the following integration by parts formula:

E (F bHU ) = E (F 03B403A0Hu)

) (2.2)

=(DxF,u >) ,

for any u e Dom 8x and F e ~2,~ . .
Notice that the condition in Lemma 2.2 implies that the H-valued smooth random variables

belong to Dom 8H. So, Dom SH is a dense subset of 

Some properties of the operator 

(1) Let u ~ Dom 03B4H, then it is clear from the definition that 03A0Hu ~ Dom 03B4H, and

= 03B403A0Hu = .

(2) Let u E Dom and F E ID2,1. Then Fu E Dom and

= F Sxu -  u , D xF > , , (2.3)

provided that the right hand side is square integrable.

The proof is a direct consequence of the same result without 9f (see [10]).

Definition 2.4. Set

DomLH = {F~ID2,1 : D HF E Dom S ? = {F~ID2,1 : DF E Dom 8H } ,

and for any F e DomL H we define

.

Properties of the operator L x:

(1 ) It follows from property (2) of bH that
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m

L 1 ~ ... , F,n ) _ ~, (ai ~) (1’’ )DFi ) )
i=1

m _

=L(~(3~)(F)D~) )
i=1

m m

= ~ (ai ~) (F )L ~fl’’i - ~ > , >
i=1 i,j=1

provided that the components of F = ... , Fm ) belong to DomLH , 03C8 is a smooth

bounded function with bounded first and second partial derivatives, and

i =1,...,m. °

(2) Under the condition of Lemma 2.2, smooth functionals of the form f (w (h ), ... , w (hk ))
belong to DomLH, and, therefore, DomLH is dense in L 2(03A9).

3. The conditional integration by parts formula

Definition 3.1. . A sub-03C3-field G of F is said to be countably smoothly generated if G is generated by
some sequence of random variables { Gi , i ~ 1 }, such that Gi e ~2,~ for all i ~ 1.

Note that by taking Gi = arctan Gi we may assume that the random variables generating the
a-field are bounded.

We can associate to (j the family of subspaces defined by the orthogonal complement to the
subspace generated by { DGi (~) , i >_ 1 } , i.e.,

K (c~) _  DGi i > 1 >~- . (3.1)

It is clear that this family .~f = { K(w) , , } has a measurable projection. This follows from the
fact that for any h e H and coe Q we have

= lim { h - ... ,DGn (w) > (h ) } . (3.2)

The next result gives a sufficient condition under which ~f is independent of the particular
sequence of generators { Gi , i > 1 } of (j.

Proposition 3.2. Suppose that { Fi , ’ i > 1 } and ( Gi , I > 1 } generate the same a-field C~,
and Fi ,Gi e i for any i > 1. Assume that the families = {  1 >1 } and

HG = {  DGi , i >-1 > } are such that and are closed operators. Then

flfF = !J{G’

Proof: It suffices to show that DFe  DGi , i _> 1 > for any §-measurable Fe There

exists a sequence yrn (Gi, ..., Gn )-~F as n -~oo, in L2(S~) and a.s. We may assume that the
functions y~n are in C~" (Rn ). Clearly (G i, ..., Gn )~ = 0, since the projection is on the
orthogonal to  DGi , i >-1 > . So D = 0 a.s., because D is closed, and this implies that
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Throughout this section we assume that q = 6 { Gi , i ? 1 } is countably smoothly generated
and ~l = .

Lemma 3.3. Let u EDom 8H and let R be a random variable such that R 03B4Hu is a square integr-
able random variable. If either

(a) R = ~(G t, ... , Gm) where y~ is a C t bounded function with bounded first derivatives, or
(b) is closed and R E ID2,1 is G-measurable and square integrable,
then Ru EDom 03B4H and

= R Sxu . (3.3)

The proof follows directly from the fact that in this case D xR = 0 and from equation (2.3).

Remark: As pointed out earlier, for , D t, ... Gn ) = 0. This result and (3.3) indi-
cate that, very roughly speaking, as far as 8H and D x are concerned, C~ measurable random vari-
ables play the role of "frozen parameters" in the partial Malliavin calculus. This is also suggested by
the following proposition: :

Proposition 3.4.

(a) Conditional integration by parts formula: For any Fe and M ~Dom 03B4H, we have

E(  > ~ ~) ( ~)

(b) L x is "conditionally self-adjoint": For any F, Q in the domain of L H,
~

Proof: Let IRm~R be a C1-function bounded and with bounded derivatives. Set

R =1~1(G t, ... , Then by (2.2)

E(FRBxu)=E(Dx(FR),u >) )
=E (  FDxR,u > +  RDxF,u > )
=E (R  DHF,u > ) ,

which proves the first part. The second part follows since

=E( > I ~) I ~) ) . C7

Corollary 3.5. L x is "conditionally non-negative" in the sense that if F E DomL x then

a.s.

This follows directly from the conditional integration by parts formula.

Remark: Let p ) be a regular version of the conditional probability given G. That means,

p : S~x~~~0,1 is a stochastic kernel such thatp ( ~ ,A) is q-measurable, and
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, 
, for all .

B

Then, the second part of Proposition 3.4 means that, for almost every (0, the operator L H is sym-
metric with respect to the probabilityp (c~, ~ ). .

An important special case is the case where G is finitely smoothly generated, namely,

G = a { G 1, ..., Gm }, where Gi e and moreover the Malliavin matrix y =  DGi ,DGj >
is assumed to be a.s. invertible. Then, for any h e H , ,

= h - ~, m (’y t )i j . 

(3.4)

i j=1

In this case, if we further assume that (03B3-1 )ij  h ,DGj > DGi ~Dom b for any h eH then by
Lemma 2.2 D x is a closed operator on ID2,1. This condition is satisfied if, for instance, Gi e IDp ,2
and E ( I (03B3-1ij) I p ) >- ID2,1 and ~D(03B3-1ij I I E L8, since 

03B4((03B3-1)ij  h ,DGj > DGi ) _ )ij  h ,DGj > b(DGi ) 
-1 (3.5)

- )ij  D G j , DGi ~ h >H ®H -  h ,DG j >  D ( (~y )i j ) DGi > . 

~~°~~

Therefore since for any CONS { hq , q > 1 } , , Fe 

 DF , hq > 03A0Hhq
q=1

it follows that

D HF = DF (’y )i j  DF , DGj > DGi (3.fi)
i ,j =1

In particular, for m =1 we have

DHF=DF-

DF,DG ~DG1~

DG1~ 1{~DG1~H~0 } . DG 1

Turning to it follows from (3.4) and (2.3) that:

=  h , DGj > DGi ]

= bh - )i j  h > 03B4DGi +

m (3.7)
+ ~  h , DGj >  D (’y DGi >
ij

+ ~,(’Y )ij  D 2 Gj , h > H ®H ~

ij
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4. The existence of a conditional density

In this section we derive two results regarding the existence of conditional densities. These

results hold under relatively weak assumptions on the Malliavin derivatives but are restricted in other
directions. For the first result the conditioning a-field is restricted to be finitely smoothly generated.
For the second result the last restriction is dropped, however it is assumed that the random variable for
which the conditional density is obtained is one-dimensional (and not a finite dimensional vector as in
the previous case). Both results are motivated by the work of Bouleau-Hirsch [3]. In the next section

we consider stronger assumptions on the partial Malliavin matrix, without the restriction described
above. Also, conditions for the smoothness of the density will be considered in the next section.

In this and the following section we assume that H is a real separable Hilbert space and

W = { w (h ) , h E H } is a Gaussian process defined as in section 1. .

Theorem 4.1: Let G 1, ... , Gn be elements of satisfying det  DGi , DG j > > 0 a.s. Set

x = { K(t~) with  DGi (co), , i =1, ... , n >-~-. Let

F = (F1, ..., , Fm ) , Fi e ID2,1 and assume that

det  D , D > > 0 a.s.

Then, there exists a conditional density for the law of F given the a-field a { Gi,..., Gn }.

Proof: Consider the augmented vector

(Gi,... G n , Fi,... F m) .

Note that in order to prove the theorem it suffices to show that the augmented vector possesses a joint
density. The determinant of the Malliavin matrix of the augmented vector is given by:

DGi, DGj > DGi, DFj >

Q=det [DGi , 
DFj>T DFi ,DFj >] . (4.1)

The result of Bouleau and Hirsch is that if the above determinant is a.s. non zero then the augmented
vector has a probability density.

On the other hand, it was shown by Ikeda, Shigekawa and Taniguchi (equation 3.29 of [4]) that

Q = det[  DGi , DGj > ] . det[  D , D > ] (4.2)

where Q is as defined by (4.1 ). By our assumptions this expression is positive and this completes the
proof. D

Theorem 4.2: Let FE ~2,~ 1 be a real valued random variable, and G = (Gi , i > 1 ) , Gi e 
Assume that is a closed operator where H is induced by G, that means, { K(w) , (0~ Q }
and K (w) _  DGi (w) , i > 1 >~ (cf. Lemma 2.2). > 0 a.s., then F has

a conditional density with respect to the sub-a-field generated by G .

Proof: Without any loss of generality we may assume that F is bounded, namely ( F ~ I  1.

Denote by PG the probability law induced by G on IR°°. Then it suffices to show that the probability
law induced by the vector (F, G ) on (-1,1 )xR°°, denoted by P (F G ), is absolutely continuous with

respect to the product measure d adPG (x ). In that case the Radon-Nikodym derivative
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f (03B1,x) = dP(F,G)(03B1,x) d03B1dPG(x) (4.3)

will provide a version for the conditional density of F given G = x .

We have, therefore, to show that for any measurable function g : (-1,1 )x~°°-~[0,1 ] such that

jg (a)d adPG (x ) = 0 we have E [g (F ,G )] = 0. If g is such a function we have

jg a = 0 (4.4)

for almost all x with respect to the law of G. . Consequently, there exists a sequence of continuously
differentiable functions with bounded derivatives gn: (-1,1 -~[0,1 ] such that

gn (a,x ~, ... , converges to g (a,x ) for almost all (a,x ) with respect to the measure

dP (F,G )(a,x )+d adPG (x ). Take
y

... 
= 

... xn)d a

and

.., y

, x = Jg (a , x )d a .

Then 03C8n (F,G 1, ... Gn) e D2,1 and

D [03C8n(F ,G1, ... , Gn)]=g (F,G 1, .. 0 , Gn 
~03C82 ~xi

(F ,G1, .. 0 , Gn )DGi. (4.5)

We have

~G1~...,Gn)-~yr(1’’,G)
a.s., as n ~~, and in L ~(Q) by dominated convergence. Because of (4.4) with g (a,x ) nonnegative,
it holds that y~(F,G ) = 0 a.s. Now from (4.5)

D~~(F,G~....GJ]=~(F,G~..~GJD~ , , (4.6)

which converges a.s. to g (F ,G )D . Thus g (F ,G = 0 because D ~ was assumed to be
a closed operator, and, therefore, g (F ,G ) = 0 a.s., because  > > 0 a.s., which

completes the proof of the theorem. D

Remark: The technique used in the proof of Theorem 4.2 can be applied, in a similar way, to obtain a
very simple proof of the absolute continuity criterion of Bouleau and Hirsch, in dimension one.

5. Another condition for the existence of a conditional density and a condition for its
smoothness.

In this section we consider first the existence of a conditional density under conditions which are
different from those of the previous section. After this we consider conditions for smoothness of the

density. Our approach will follow that of Watanabe (cf. [11]) and we will construct the conditional
expectation of some generalized functionals obtained by pull-back.
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Recall that the 03C3-algebra G is assumed to be smoothly countably generated by { Gi , , i > 1 }, ,
and ~f = { K (w) , ~E S~ } with K =  DGi , i >_ 1 >1. .

5.1 A result on the existence of a conditional density:

Theorem 5.1: Let F = (F 1, ... ,F m) be a k -dimensional random vector verifying the following
conditions:

(i) Fi E ~2~1 , , D HFi E Dom S and

.

(ii) The partial Malliavin matrix 03B3ijH =  D HFi , D > is invertible a.s.

Then there exists a conditional density for the law of F given the a-algebra C~ . .

Proof: For any integer N > 1 we consider a function C4 Rm ) (C°° and with com-
pact support) such that

(a) (a) =1 if 6E KN ,

(b) (a) = 0 if 03C3 ~ KN+1, where

N = { oe IRm 0 N for any t j and |det03C3| ~ N }. 
’.e. N is a compact

subset of GL (m ) c ~m ® Rm .

We fix a function C~b(IRm ). Using the differentiation rules of the partial Malliavin calculus we

deduce and

m

.

i=1

Hence,

DH03C6(F),DHFj > = (~i03C6)(F)03B3ijH ,
i=1

where ~yH is as defined above in the statement of the theorem. Then, we have
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~ G) 1

= > (Yx1)‘’ I ~l
j=1

= E[DH(03C6(F)(03B3-1H)ij03C8N(03B3H)), DHFj >
~=i

- ~(F’  D x((Yx (Yx)) , D > I Gl ]

>~~G}
j=1

,

where AN is some integrable random variable.
Denote by pN (w,B ) , B e B ), a regular version of the conditional distribution of the ran-

dom vector F (with respect to the measure ) given the 6-field G . The above relations

imply that for any i ,

| (~i03C6)(x)pN(03C9,dx) | ~ ~03C6~~E(|AN | | )(03C9) , a.s. . 
(5.1)

Rm

There exists a countable subset S in such that for any finite measure v on the pro-

perty

I j (?I #) (~ ~ ~ ~I i =1,...,m .

Rm

implies the same inequality for any function ()) in . As a consequence we may assume that

(5.1) holds for any function and any N with P (N) = 0. By Malliavin’s lemma (cf.
[7]), for any N, the measure pN (w,dx is absolutely continuous with respect to the Lebesgue
measure on Rm and it has a density fN (w,x which is G ~ B )-measurable. Consider the

measures vN on G ~ ’B (Rm) defined by

vN(AxB)= j = j ,

An{FeB} } AxB

where A and B e B .
The sequence vN is increasing, and v = sup vN is a finite measure verifying

v(A xB ) = P [A n { FE B } ] due to condition (ii). Besides, v is absolutely continuous with respect
to dPdx because so are the measures vN. . Therefore, the Radon-Nikodym derivative of v with
respect to dPdx on § ~ B (IR"’~ ) will be a version of the desired conditional density. D

5.2 The conditional pull-back of Schwartz distributions, and the regularity of conditional laws
Assume that F = (F 1, ... , Fm ) is a random vector such that Fi~ID~ for any

i = 1~... ~. .

Let G = 6 { Gi , i > 1 } be a countably smoothly generated o-algebra such that the following
condition holds:
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(C ) ) ~~ID~(H ) implies .

This condition holds, for example, if the number of generators is finite, say
G1,... ,Gn,(det  DGi , DG j > )-1 E n Lp(03A9), and Gi~ID~, i =1, ... , n .

p >1 I

Consider the partial Malliavin matrix of F, defined as before by

03B3ijH =  D HFi , D > .

Lemma 5.2. If (y~ )i~ e LP (Q) for some p > k +1, then )t~ e for all 1  r  p /k +1,
and any integer k > 1. 

The proof of this lemma is the same as given on page 18 of Ikeda Watanabe ([5]).

Lemma 5.3. Suppose that (~) for some p > 2k , R E with q > 1, and

1 + 2k  1. Then there exists random variables Ai1,...,Aik depending linearly on R , such that:

(i) For any 03C6~C~b(Rm) .

D, [(ai~ai2... R _~’’ ... (Ai~(R)) ... )) ~ .

(ii) sup ~ 1 
~ Aik (... (Ai1(R))...)~r  °° for any r >_ 1 such that

1 >1+~.
r q p

Proof: We fix a function Suppose first that k =1. We know that
m

.

i=1

and

(~i03C6)(F) = (03B3-1H)ij  DH03C6(F), DHFj > .~ 

j=1

Hence, if R e i for some q > 1 such that 2 + 1 q  1, we obtain as on pages 18-19 of [5] that

E[(~i03C6)(F)R |]

=  D~(F) > I ~~ 1
j=1

- ~ m E ) b((Y H I ~l l
j=1

’

where
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7=1

= E -R D(y~)~ >-(y~)~ D~ ,DFj > } . .
./=’’

We assume p>2. . Then (because

1 ~ r  -S-), and Therefore, condition (ii) holds for any r  1 such that

1 r > 1 q + 2 p.
Repeating the above arguments, the result can be proved for an arbitrary k > 1. . D

In a similar way, if we assume p > 4k and for q > 1 with 2014 + 2014  1, then we

have

E[({1+ !~!~-A}~)(F)R!~]=E[())(F)B2~(R)!~ , ,
where A is the Laplacian and (R is a random variable depending linearly on R and satisfying

_ _ ~q,2k s 1 
~B2k(R)~r  ~ ,

for any r > 1 such that 2014 > 2014 + 2014. .
r q P

In the sequel we will assume that ~ is a Polish space and denote byp (co,B) (B Borel subset
of Q) a regular version of the probability P conditioned by ~. .

Define the following random seminorm on 

~ q ,n s 1 
~

~ ~ q ,n S 1 
’ 

.

where 20142014 + 2014 = 1 , ~ > 1. .
Po q

Notice that the following inequality holds true

.

Denote by ) the Schwartz space of rapidly decreasing C~ functions on . For

!!~!!2~=!!(i+ !~ !~-A)~!!~ , ,
and let 03BE2k be the completion of S(Rm) by the norm . ~2k. 03BE-2k is the

k >o

Schwartz space of tempered distributions on .

Proposition 5.4. Let k be a positive integer. for some p >4A and if we take q >1

satisfying 2014 + 20142014  1, then the mapping
q P
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S ( IRm ) ~ ~ p ~ (F ) E ID~
is continuous with respect to the norm )j - ’ on S(R"’‘ ), and the norm I I ’ I on 

for almost all eo, where ~ + ~ = 1. .
Po q

Proof: For )) E and R E IDq,2k , I I R II 1, we have, using Lemma 6.3,

|03C6(F)(03B3)R(y)p(03C9,dy) |

= |({(1+|x |2-0394)k(1+|x I 2-0394)-k03C6 } )(F )(v )R I
Q

- I f ((1 + I x I

~ ~(1+|x|2-0394)-k03C6~~E(|B2k(R) I 

I ,

for almost all 0.

Taking countable and dense subsets of S(Rm) and we may assume that the above inequality
holds for all j) and R , a.s., and this concludes the proof. D

As a consequence we deduce the following results on the conditional pull-back of Schwartz distri-
butions :

Proposition 5.5. Under the assumptions of Proposition 5.4, the mapping

S(IRm ) 3 ~ p ~(F) E ID~
extends a.s. to a unique continuous linear mapping

2k 3 T p T (F ) E 
Here T (F ) is a generalized random variable in the sense that co-a.s., the "conditional expectation"
E [T (F )R ( ] exists for all R in IDq ,2k . .

Proposition 5.6. If F is such that )~~ E n LP, then, the mapping
p > i

~-2k 3 T I T(F) E 
is continuous for every k > 1 and Po > 1. In particular,

S’(IRm ) 3 T p T (F ) E ID_~~w :_ ~ ( u ~p ,_2k ,w)’ 
1 

’ ’

is well defined.

These results can be applied to derive the existence of a smooth conditional density of F given

C~ as follows : :

Theorem 5.7. Take mo = [m J+1. Assume (03B3-1H)ij E Lp for all i , j =1, ... , m and for some
p > 4(mQ+k ). Then there exists a version of the conditional density f (cu,x ) : 03A9 IRm~IR+ of F
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given  such that for all co, , f (o, . ) is of class C 2k .

Sketch of the proof: We introduce the Dirac 8-function bx which belongs to > m . Furth-

ermore, Rm 3tX ~ 8x e is 2k -times continuously differentiable for any k ~ 0. There-

fore, if 1  po  p / 4(mo +k ) then Sx (F ) E for all x e a.s., and the mapping

~-~ 8x (F ) E -2k ,w

is 2k -times continuously differentiable.

As a consequence, the function E [Sx (F ) ~ G~ is 2k -times continuously differentiable, a.s., and it can
be seen as in Watanabe [11] that this function provides a version of the conditional density of F given
G. . a

6. Applications to regularity of conditional laws in filtering problems

In this section we will discuss two different applications of the results obtained in the previous
sections. First we present a criterion for the existence of a density which is based on Theorem 5.2.
We show this criterion in a setup that can be considered as a very general formulation of the filtering
problem without feedback.

Let W = { W (A ), A e 0 } be a zero mean Gaussian measure on the finite atomless meas-
ure space (T ,0,~), on a separable 6-field 0 and EW (A )W (B ) = nB ). Fix a measurable

subset A of T and set Ho = { h e H : h vanishes on A ~ } . . Also set

= a { W (B ), B e 0, B cA } . . Suppose we are given a random variable F e i and a

real valued process u = { ut , t e T } belonging to such that they are both -

measurable.

Consider the stochastic process Y = { Y(B ), B e 0, B indexed by measurable
subsets of A ~ , defined by

. 

~ )

In order to point out the relevance of (6.1 ) to the nonlinear filtering problem, let T = [0,2), let 0 be the
Borel a-field on T and  the Lebesgue measure. Set A = [0,1 ), then (6.1) can be rewritten as

s

Y([1,1+s )) _ s E [0,1 )
0

Setting Z (s) = F([1,1+s)), M = Ve, W(1+s )-W(1) = v(s) yields
s

Z(s) = 
’

o

where Vs , s E [0,1) is independent of { v(6) , , 8 e [0,1)}. . Note that is independent of
6 { v(6) , , 8 e [0,1)} , , Vs is assumed to be adapted to and is not restricted to be adapted to

[and to be a solution to a stochastic differential equation) as in the classical setup.

Theorem 6.1. Under the above assumptions, the law of F conditioned by the a-field
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has a density, provided that the following conditions are

satisfied:

(a) U E ID2,2(L 2(T )),
(b)  DF, DF > > 0 a. s.

Namely: under the regularity hypothesis u E 2(T )), the condition for the existence of a den-
sity forF, i.e.  DF, DF > > 0 a.s., also implies the existence of a conditional density.

Proof: First note that the is countably smoothly generated because we can take
~ = 6 {  Y,ei > , , i >_ 1 }, where , i >_ 1 } is a C.O.N.S. for L 2(A ~ ), and
 Y,ei > =  u ,ei > + W (e~ ). Set ~ _ { K (w) , w E ~ } , where

K (w) =  D (  Y,ei > ) , , i >_ 1 >1 .

The proof will be carried out in several steps:

(i) We claim that

K = { g E L2(~’) : g (t ) = g (s )Dt us , for any tEA, , ~-a.e. } .
A~

That means, the values of every function g E Kl on the set A depend linearly on its values on A ~ ,
and there is no restriction on the values of g on A ~ . This property is an easy consequence of the fol-
lowing formula

ei (t ), ift E A ~ , because u is -measurable .

Dt ( C ~ > ) _ 
j ei (s )Dt us ) , if tEA, , because ei (t ) = 0 . .
A~

(ii) The operator D 9f is closed.
L2 L2

in fact, suppose that Fn ~ 0, Fn E ID2,1, and D HFn ~ ~. Then property (i) implies that

6.2

for any t E A . We know that E K (co) for almost all co. Then it suffices to check that

, for any tEA, s.3

because in view of (i) (6.3) implies that 11 E Kl and, consequently, 11 = 0. Let R be a smooth ran-
dom variable, and h E L 2(A ). Using (6.2) we have
E [R ht )] = E (  > ) = li m E (  D ,Rh > )

A n

j (D )sDt us ))Rht a(dt )J S.4n A A~ 
( ° )

.

n n A~ A
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The first limit is equal to zero. . For the second one we write D Fn = DFn -D . Integrating by

parts and using the fact that the process , s E T ) belongs to the
A

domain of S (due to assumption (a)) we obtain that (6.4) is equal to

- li m E [Fn S { (s usRht ] + E [ ~s (Dt usRht =

n A A~ A

~

A A~

which completes the proof of (6.3).

(iii) We will show now that assumption (b) implies that  > > 0

a.s. This inequality will follow from the inclusion

{ o : : > = 0} = {co : :  DF,DF > = 0} a.s. (6.5)

In order to prove (6.5), assume that  > = 0 for a fixed value of o. We have

,

= 

Dt F- (DH|F)sDtus (ds ) , i f t ~ A .~ AC

Therefore = 0 for , which implies DtF = 0 for t e A and, consequently,
 DF,DF > = o. .

Finally the result follows form Theorem 4.2 and properties (ii) and (iii). . D

We conclude this section by pointing out that the methodology developed in the previous sections

can be used to derive the regularity of conditional laws in a filtering problem with feedback.

Denote by (xt ,zt ) the solution of the following stochastic system

dxt = Xo (xt ,zt )dt + Xi (xt ,zt + Xi (xt ,zt )dzf
dzt = Z (xt ,zt )dt + dwt ,

where xt e IRn , , zt e RP. . The processes , t >_ 0 , t 
. 

=1, ... , m } and

{ > 0 , i = 1~ ... , p } are independent Brownian motions. We assume that the

coefficients Xi , are smooth functions which are bounded together with their derivatives.

The stochastic integrals are taken here in the Stratonovich sense.

Consider the vector fields on IRn IRp defined by

, o  i  m ,) ~ ~ )ax,
i(x,z) = ij(x,z)~ ~xj + ~ ~zi , i~i~p .

Then we have: :

Theorem 6.2. Assume the following Hormander-type condition, (H): The Lie algebra spanned by
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X ~, ... , Xm and the brackets of Xo,XI, ... ,Xm , ... , Yp where there is at least one

Xi , 1 _ i  m , at point (xo ) has dimension n . . Then, the law of xt (t > 0) given
, Os _ t } hasaCoodensitYPt(X). .

A theorem of this type (including smoothness and integrability properties of the density as a function of
(t ,x )) has been proved using Malliavin calculus by Bismut-Michel [2] and Kusuoka-Stroock [6]. A
rough sketch of the proof in the context of the results of the paper would be as follows. The first step in
proving Theorem 6.2 is to use a Girsanov transformation in such a way that zt becomes a Brownian
motion. Denote by Po the new probability measure and by At the Radon-Nikodym derivative
dP / dPo at time t . Now we can estimate a conditional expectation like

Eo ~f ~xi(xt)t | zs , 0 _s _t I

by

Eo [det  , D > 
-1 ~ R [ ) , o _ s _ t ] I I f I I ~ ~ ,

where R is a random variable in as it has been done in Section 5 (see the proofs of Theorem 5.1
and Lemma 5.3). . Under the probability Po , the family of Hilbert spaces H is constant, because zt is a
Brownian motion independent of Wt. . So we can compute  D , D > as in the classical

case, and the Hörmander’s condition (H) in Theorem 6.2 implies that

Eo (det  D Hxt , D Hxt > p )  ~ for every p >_ 2. . This property allows to conclude the proof as
in the nonconditional case.
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