@article{SPS_1989__23__536_0, author = {Imkeller, Peter}, title = {Regularity and integrator properties of variation processes of two-parameter martingales with jumps}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {536--565}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {23}, year = {1989}, mrnumber = {1022937}, zbl = {0731.60044}, language = {fr}, url = {http://archive.numdam.org/item/SPS_1989__23__536_0/} }
TY - JOUR AU - Imkeller, Peter TI - Regularity and integrator properties of variation processes of two-parameter martingales with jumps JO - Séminaire de probabilités de Strasbourg PY - 1989 SP - 536 EP - 565 VL - 23 PB - Springer - Lecture Notes in Mathematics UR - http://archive.numdam.org/item/SPS_1989__23__536_0/ LA - fr ID - SPS_1989__23__536_0 ER -
%0 Journal Article %A Imkeller, Peter %T Regularity and integrator properties of variation processes of two-parameter martingales with jumps %J Séminaire de probabilités de Strasbourg %D 1989 %P 536-565 %V 23 %I Springer - Lecture Notes in Mathematics %U http://archive.numdam.org/item/SPS_1989__23__536_0/ %G fr %F SPS_1989__23__536_0
Imkeller, Peter. Regularity and integrator properties of variation processes of two-parameter martingales with jumps. Séminaire de probabilités de Strasbourg, Tome 23 (1989), pp. 536-565. http://archive.numdam.org/item/SPS_1989__23__536_0/
[1] Semimartingales à deux indices. Séminaire de probabilités XVI. Lecture Notes in Math. 920, 355-369. Springer, Berlin. | Numdam | MR | Zbl
(1981)[2] Stochastic integration and Lp-theory of semi-martingales. Ann. Probability 9, 49-89. | MR | Zbl
(1981).[3] Stochastic integrals in the plane. Acta Math. 134, 111-183. | MR | Zbl
, (1975).[4] Probabilités et potentiel. Ch. V-VIII. Hermann, Paris. | MR | Zbl
, (1980).[5] Quasimartingale und stochastische Integratoren mit halbgeordneten Indexmengen. Dissertation, ETH Zürich. | Zbl
(1982).[6] A class of two-parameter stochastic integrators. Preprint, Univ. München. | MR
(1987).[7] Two-parameter martingales and their quadratic variation. Lecture Notes in Math. 1308. Springer, Berlin. | MR | Zbl
(1988).[8] On inequalities for two-parameter martingales. Preprint, Univ. München. | MR
(1988).[9] Processus stochastiques à indices partiellement ordonnés. Rapport interne 55. Ecole Polytechnique, Palaiseau.
(1979).[10] On some properties of discontinuous two-parameter martingales. Theor. Probability and Math. Statist. 29, 87-100. | MR
(1984).[11] A generalized Ito formula for two-parameter martingales . I. Theor. Probability and Math. Statist. 30, 114-127. | MR | Zbl
(1985).[12] On the quadratic variation of two-parameter continuous martingales. Ann. Probability 12, 445-457. | MR | Zbl
(1984).[13]Une formule d'Ito pour les martingales continues à deux indices et quelques applications. Ann. Inst. Henri Poincaré 20, 251-275. | Numdam | MR | Zbl
(1984).