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Abstract. In this paper we study the weak local submartingale property and the quasimartingale

property of processes obtained by the composition of a two-parameter continuous martingale by

2-functions whose second derivative is convex.
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0. INTRODUCTION

In this paper we are concerned with some properties of the process obtained by the
composition of a two-parameter martingale with a 03B62-class function.

In the one-parameter case the composition of a martingale with a convex function gives a
local submartingale. On the other hand, the semimartingale property is preserved under
transformation by convex functions, as can be proved by means of a general version of
Tanaka’s formula ([5]).

Some results in this direction have been given for two-parameter processes. In a previous
work ([6], [7]) it has been established that the convexity of f" implies the weak submartingale
property of f(M) under some hypotheses on f and the martingale M.

The notion of semimartingale does not possess up to date an equivalent in the
two-parameter theory. For this reason it seems more convenient to deal with the

quasi-martingale property (see [1], [4]), which can be expressed in terms of the total variation
of the Doléans-Föllmer measure associated to the process. In [7] an explicit expression for the
variation of f(W) has been obtained, where f is a 03B62-class function with some requirements,
and W the Brownian sheet. In particular, we have sufficient conditions for f(W) to possess
the quasi-martingale property.

The aim of this paper is to generalize the above mentioned results. One part, section 2,
deals with the weak submartingale property of f(M) in the local sense, when f is a
03B62-function whose second derivative is convex and positive. This property is obtained using
two different methods. The first one consists in proving a suitable two-parameter Ito formula
for 03B62-functions and continuous martingales bounded in L2, with path independent variation.
The second one is based on the compact Ito formula of [13] and uses a regularization
procedure. It requires M to be bounded in L4, but the martingale may belong to a strictly
larger class than before.

In Section 3 we study the quasi-martingale property of f(M), when f is a 03B62-function
such that f " is the difference of two convex functions. We prove a formula for the variation
of f(M) (see Theorem 3.1) involving the local time, and this allow us to state a necessary and
sufficient condition to ensure the quasi-martingale property.

1. PRELIMINARIES AND NOTATION

The parameter space is T = [0, 1]~ endowed with the partial ordering (s , ) if
and only if s 1  s2, tl S t2; (sl,tl)  means s  s2 and tl  . If f is a map
from T to )R, the increment of f on a rectangle z2] = {z E T, z 1  z  z =
(sl, z2 = (s2, t2) is z2]) = f(z2) - t~) _ f(s~, + f(z ). For any zE T we
define RZ = [0, z].



568

We consider a complete probability space (Q, ~’, P) together with an increasing family
of sub-a-fields of ‘~, satisfying the usual conditions (F 1) to (F 4) of [2].

Besides the classical notion of martingale, in the two-parameter case, other related
definitions can be given. If is a real valued, integrable and Fz-adapted
process, M is a i-martingale (i = 1, 2) if for any z S z’, z = (s, t), E {M((z, z’])I‘~z}= 0,
where Fz 1 (resp. Fz2) is the a-field Fs,1 (resp. M is said to be a weak martingale

(resp. weak submartingale) if E f M (z, z’]/Fz} = 0 (resp. >_ 0 ).

Let mP (resp. be the class of two-parameter martingales (resp. continuous

martingales) bounded in IP p > 1. It is well known (see [2]) that for M E ~m2, there exists
an increasing, predictable process M>, called the quadratric variation of M, such that
M 2 M> is a weak martingale. Moreover, it has been proved in [8] that if M e ~m ~ M>
has a continuous modification.

If and vanishes on the axes we say that it has path-independent variation

(p.i.v.) if M. t>S = Ms.>t = M>~ .
Consider a grid S of T given by

i = 0,..., p; j = 0,...,q; 0 = so  sl...spl, 0 = to 
For any (si, tj) = zl~ E S we define

e.. _ y (s., 1 S. i+1 ] x (t., ~ t. ~+1 ], (S., i S. i+1 ] x (0, t.], ~ e2. _ y (0, S~] i x (t~, ~ t. ~+1 ],
with the convention sp+1= t ~ = 1. °

Throughout this paper we will deal with an increasing sequence of grids { Sn, n ~ 1} of

T, whose norm tends to zero (i.e. !S°! = max {|si+1- si |+|ti+1-ti|, (si, tj) E Sn} ~ 0), and
for any Z E T we define In z = f (i,j) E N2, (sj,tj) E S n, t.)  z}. In will denote the set

~2, (si, E I z and I are defined in an analogous way, but referred to S .

In the Doob-Meyer decomposition of a martingale M E ~m~ (and therefore in the Ito

formulas for f(M)) we encounter a martingale M, obtained as the L1-limit of the sequence

03A3 M(03941ij)M(03942ij)

(cf. e.g. [8] and [9]).

For martingales M of m c 4 null on the axes, it has been proved in [10] that the property
p.i.v. implies M, M> = o. The reciproque is not true in general.

For any integrable, adapted process X = {Xz, z E T} and any rectangle (zl, z2], zl  z2,

we define
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Vars(z1,z2] X =  E | E {X0394ij ~ (z1,z2])/Fzij}|.

When (zl, z2) _ (0, 1]~ we simply write Vars X. We also define

] X,

and Var X = sup Vars X.

The total variation of the Dol6ans-Follmer measure of the process X on (zl, z2]  03A9

coincides with ~ X. Then, following [4] the process X = {Xz, z E T} is said to be
a planar quasimartingale if Var X  ~.

Sometimes it is convenient to localize the above definitions. This can be done by means

of the notion of stopping domain. A set D C T x Q is a stopping domain if 1D is a

progressively measurable process, and R~ C D(co), whenever z e D(co). For any class ~

of processes, will denote the class of processes X such that there exists a sequence

(Xn, n >_ 1 }, Xn e ~, and an increasing sequence n >_ 1 } of stopping domains, with
u Dn= T, such that for any n, Xi = XZ , if z e Dn .
n

Given a function f : R --~ !R we introduce a sequence of smooth functions {fm, m >_1}
by means of a sequence of regularization kernels of the form

a(m x), (1.1)

where is a nonnegative function whose compact support is contained in the

interval (-~, 0] and such that a(x) dx =1. We take

fm(x) = (f*03B1m) (x) =  f(x + y) 03B1m(y) dy . (1.2)

2. WEAK SUBMARTINGALE PROPERTY OF F(M)

In this section we study the weak submartingale property of f(M), f being a real

function and M a two-parameter martingale. Two slightly different results in this direction
are presented. The first one requires M to be a martingale belonging to ~,~ and of path
independent variation; its proof is based on a special two-parameter Ito’s formula for
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2-functions. The second one assumes that M is in me and M, M> = o. The proof uses
the compact Ito formula of [13] and a regularization procedure.

We first state a deterministic result.

Lemma 2.1. Let X and Y be two functions in C(T) and assume that Y is increasing,
in the measure sense. Consider the sequences defined by

(2.1)
(z) =  (Xsi,tj+1 ^t - Xsi,tj) (Ysi+1 ^s, tj - Ysi,tj),

03C8n(z) =  (X03C3,tj+1 ^t - X03C3,tj)d03C3 Y03C3,tj
s

= (X03C3, tj+ 1 ^t - X03C3,tj ) d03C3 Y03C3,tj. (2.2)

Then {03C6n, n > 1 } and n > 1} converge to the same function X * Y E C(T).

Proof.~ We first remark that and can be written in the following alternative

way

03C6n(z) =  Xsi, t (Xs i+1 ^s, t - Ysi,t) -  X
si,o (Ysi+1 ^ s,o - Ysi,o)

- 03A3 03A3 X Y(0394ij-1). 
(2.3)

(j, 0tj~t} {i, sjs} si, tj

03C8n(z) = so X03C3,t d03C3 Y03C3,t - s0 X03C3,o d03C3 Y03C3,o

- Y f X d (Y - Y ) . (2.4)

Therefore, we obtain

sup |03C6n(z) - 03C8n(z) | ~ C sup n |Xu - Xv|Y1,1 . (2.5)

On the other hand n >_ 1} is a Cauchy sequence. Indeed, take m > n and suppose
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that Sm = ~(6i,, E T, it = 0,...,pm, j’ = 0,...,q~}. For every j = 0,...,qn define

J. J = ~j’, x., J E (t., J tj+1] }, then, using (2.4) we obtain

sup |03C8n(z) - 03C8m(z)|

= sup I 0 

Cx - x J d (Y - Y ) I

~ C supn 

which tends to zero as n ~ oo, uniformly in m.
This fact together with inequality (2.5) proves the Lemma. 0

Let us now prove a particular Ito formula.

Theorem 22. Let M be a martingale belonging to m2c such that M2 - M> is a

martingale. For any real function f of class ~ 2, and every z= (s, t) E T we have

f(Mz)=f(Mo,t) + zof’(M03C3,t)d03C3M03C3,t + 1 2sof"(M03C3,o)d03C3 M>03C3,o
+ 1 2 f" (Mu) dM>u + 1 2 [f"(M) * M>]z 

. 

(2.6)

Remark: The assumptions on M are equivalent to the property of p.i.v. if M vanishes
on the axes (see [ 10]).
Proof: To simplify the notation we take z = ( 1,1 ). By Itô’s formula we can write

= 1) + 1) da Ma 1 + - 10f"(M03C3,1)d03C3 M> .
We have

1 1

" f 
o 
f"(M 0,1 )d M>03C3,1 - 

0 
f"(M03C3,0)d03C3 M>03C3,o
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Si+ 1 1

= 03A3 ( f"(M03C3,tj+1) d03C3M> 0,t. -f J 
Si 

f " (M ) d 0 M> ) 0,t/

= an + bn + cn,

where:

an = 03A3 f"(Mzij) M> (0394ij),

si+1

bn = E s. [f"(M 0,1. ) _ f "(M a~ ~ )~ d 6 M> , ~’ J
(i,j)E I ~i ~~ ~ ~

and

cn =  
[f"(M

03C3,tj+1)-f"(Mzij
)]d

03C3 (M>03C3,tj+1 - M>03C3,tj) .
The sequence an converges a.s. as 

T

By Lemma 2.1 applied to the paths of X = f "(M) and Y = M>, we obtain bn-~
(f * as n a.s. Finally, since

j cj (  sup n I f "{Mu) _ f "(M~) I M> (R ) , >n 
( 

~ ~ ~1

lim cn = 0 a.s., and the theorem is established. D
n-oo

In order to study the weak submartingale property of f(M) we need the following
lemma.

Lemma 23. Let ~P be a real convex function and M a martingale in m~ 2 . The continuous
process p(M) * M> is a local weak submartingale.

Proof: For any positive integer k, define

D. = { (z, co), sup k } , (2.7)
ue Rz Z 
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and put N = M>. We have to show the existence of a sequence of weak

submartingales {Nk, k >-1 ~ such that, for any k >_ 1,

(2.8)

Let z = (s, t). For each i e N such that, si  s, define

Tki = inf {03C4, Msi 03C4 ~ Dk} ,

thi s is a stopping time with respect to the filtration {F1,t, te [0,1]}, and we have

10 k (z) i n C ~P(Ms, 1’ t, J+1 ^ t) - ~P(Ms. i’ ~ t. ) J C M> , si+1 ^ s’ j . - 

= 1Dk(z)  [03C6(M Tkisi,tj+1 ^ t) - 03C6(MTkisi,tj)] [M>si+1 ^s, tj - M>si, tj ] ,

where {MTkisi,t , t ~ 0} denotes the martingale, stopped at 1..
Using the convexity of cp we obtain

E{03C6(MTkisi,tj+1 ^t) - 03C6(MTkisi,tj)] [M>si+1 ^s,tj - M>si,tj] / zij}

=E{[M>si+1^s,tj - M>si, tj] E{03C6(MTkisi,tj+1 ^ t) - 03C6(MTkisi, tj+1 ^t) - 03C6(MTkisi, tj)/ 1, tj }zij }
> 0.

k k

Hence ~, n CcpcMTi . s , i t J+1 ^ ) - t ~( NITi s., 1 t.)J J C M> s, i+1 ^ s ’ tj - M> si’ ~ ,, is a

weak submartingale. 

Notice that {Jn,kz,n ~ 1} is uniformly integrable, therefore by n a 2 1 Ll- 
exists and defines a weak submartingale. Finally since 

° 

k k n-~ ~ 
z

(2.8) holds with L1-lim Jn,kz, and the proof of the Lemma is complete. D
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We can now state the main result of this section.

Theorem 2.4. Let f be a ~2 function such that f " is convex and positive. Then, if M

is a martingale in ~,~ such that M2- M> is a martingale, the process z E T} is

a local weak submartingale.

Proof: It is an immediate consequence of Theorem 2.2 and lemma 2.3 applied to

D

The conclusion of Theorem 2.4 can also be obtained by a more direct approach, using the

compact Ito formula of [13]. Here the martingale M is supposed to belong to ~,~, but
the path independent variation property can be replaced by a weaker one. More precisely
we can prove the following result:

Theorem 25. Let f be a ~2 function whose second derivative is convex and

positive. Let Me ~,~ , null on the axes and such that M, M> =0. Then the process
{f (MZ), z E T} is a local weak submartingale.

Proof: (a) Let us first prove the theorem under stronger hypotheses on f : Assume that

f E f " convex and positive. By the Ito formula proved in [13] we have

f (Ms~t) = f (o) + dMz
R

+  [f"(Mz)dz + f"(Mz)dS(1)z + f"(Mz)dS(2)z + 1 2 f"(Mz) d M>z]

+ [1 2 f"’(Mz) dW(1)z + 1 2 f "’(Mz)dW(2)z dW(2)z + 1 4  f’v (Mz) d >z. 2.9

We recall that z E T} (resp. {S(2)z, z E T}) is a continuous I-martingale (resp.

2-martingale) obtained as the £ -limit of the sequence { ~ n M(a2) z E T; n ? 1 }

(resp. E 
n 

n >_ 1 }), and (resp. {Wi2~ z e T}) is
~ ~~ ~ 

the continuous 1-martin g ale (resp. 2-martingale) obtained by the Ll -limit of the sequence
{ ~ ~ Z E T; n >_ 1} (resp. { E ~ n >_ 1}) .These

processes are two-parameter stochastic integrators.

The properties on f ensure that the process defined by
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Zs,t = [1 2 f"(Mz) dM>z + 1 4 f’v(Mz)d>z] ,
is increasing in the measure sense.

Consider the increasing sequence {Dk, k >_ 1 } of stopping domanins defined by 2.7.

For (s, t) E Dk, f(Ms,t) coincides with the weak submartingale given by

1Dk(z) {f’(Mz)dMz + + + f"(Mz)dS(2)z + 1 2f"(Mz)dM>z

+ 1 2 f’’’(Mz)dW(1)z + 1 2 f’’’(Mz)dW(2)z + 1 4 f ’v(Mz) d >z},

and consequently the assertion is proved.

(b) In the general case, we consider a sequence {an(x), n > 1 } of regularitzation kernels of
the form (1.1), and the corresponding {fn, 

Each fn satisfies the hypotheses of part (a), thus, {fn (MZ), z E T} is a local weak

submartingale, for any n > 1.

Consider the martingales mk E and %f given by
mks,t = 1Dk (z) dMz , ks,t = 1Dk (z) dz .

Notice that

m , mk> - 
R 

1~ ~ (z) d M, M> - 0,

so, (2.9) still holds with f replaced by fn and M by mk, and it follows that {f n 
z ~ T} is, for any n > 1, a weak submartingale. 

’ 
n z ’

Then, since 1Dk (z) fn(Mz) = 1Dk (z) fn (mzk), taking account of the convergences

Ll
1Dk (z) fn(Mz)  1Dk(z)f(Mz),

and

1Dk (z) fn (mkz) 1Dk (z) f(mkz) ,

we obtain
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1Dk (z) f(Mz) = 1Dk (z) f(mkz) ,
where f(mkz) is a weak submartingale. This finishes the proof of the Theorem. D

3. . QUASIMARTINGALE PROPERTY OF f(M)

The second part of this paper is devoted to study the quasimartingale property of the

transformation of a two-parameter martingale by a ~2-function.

In order to carry out our programm we will state a formula for the total variation of the

Doleans-Follmer measure (or conditional variation) of f(M). This formula involves the local

time of the martingale M and is obtained by means of the compact Ito’s formula proved in

[13].At the same time this provides a necessary and sufficient condition for f(M) to be a

quasimartingale. We refer the reader to [14] for analogue results in the one-parameter setting.
In the sequel the martingale M is supossed to be null on the axes.

Assume that M E m~ satisfies the following hypothesis:
(H 1 ) The measure M> is absolutely continuous with respect to the product of its

marginals.
It has been proved in [11] (see Corollary 4.2) that, under (H 1), M> is absolutely

continuous with respect to M>, a.s. Futhermore, since the local time L of the martingale
M with respect to the measure M> always exist (Theorem 3.1, [9]), so does the local

time L of M with respect to M> (cf. Lemma 5.1, [11]), and we have

L (x, A) = J ))(u) L (x, du), a.s., (3.1)

03C6 being the Radon-Nikodym derivative d .

Following [14] a function g : (R ~ is said to be of class (P) if its second

derivative in the distributional sense is a bounded measure v (i.e. ~ v (dx)  oo).
!R

We can now state our main result:

Theorem 3.I. Let M be a martingale belonging to ~m p, for some p > 4. Assume that

M satisfies (H 1), and that Ni, M> = o. Let f E ~2, such that f "is of class 

Then, if we denote by v the second derivative of f " in the distributional sense, we

have, for any zl, z2 E T, zl  z2,
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Var(z1,z2] f(M) = E  {|1 2f" (a) 03C6(z)+1 403C6(z)|(a, d z) d a + 1 4(a, d z)|v3|(da)}

(3.2)

where v(da) = da + vs(da) is the Lebesgue decomposition of v in its absolutely
continuous and singular part, with respect to the Lebesgue measure on lR.

Hence, f(M) is a quasimartingale if and only if

E J ! d AJ  oo ,
T

where

Az = (1 2 f "(a) 03C6(u) da + 1 4 03BD(da)) (a, du), (3.3)
z

zeT.

Proof: ( 1 ) The hypotheses on f imply the existence of some constants a, fi such

that

x

f "(x) v(dz).
o (-, Yl

Consequently f " is the difference of two convex functions of class (~3), cpl and cp2,
and the following conditions hold:

~ f ’(x) ~ I  + bl I x I + cl ,
I f "(x) 1  az ~ x ~ 1 + b2 , (3.4)
I f "’(x) I  a3 .

Consider the sequence {fm, m >_ 0~ defined by (1.2). ° We remark that fm" is the

difference of two convex functions (cpm and c~m), and that i = 1, 2 . (Here
we are dealing with the left derivatives). Furthermore

(x) ( S sup f 
~‘l 

(x + , for k =1,2
|y|~1 (3.5)

I fm (k) (x) I ~ C, for k = 3,4

(2) We apply the compact Ito’s formula of [13] to fm(M). Then, we obtain
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fm(Ms, t) = fm(0) + fm(Mz)dMz

+ J + f~ + 2 
+ 1 2 f’’’m(Mz)dW(1)z + 1 2 f’’’m(Mz)dW(2)z

+ J 1 f ~ m ~z) d M> . z ( 3.b )

Since M E for p > 4, and due to conditions (3.5), every term in the

right-hand side of (3.6) belongs to Ll. This is obvious for j d and

f’vm(Mz) d >z . In order to check this property for the stochastic integrals it suffices to

prove that the corresponding sequences of Riemann sums are bounded in L , for some
~ > o. Consider, for example, the sequence { 
By Burkholder’s inequality we have 

1~ J J

E I L f (M ) M~~i.) 

~ C E ( 03A3 f"m(Mzij )2 M(03941ij)2M(03942ij)2)

~ C { E { sup | f"m(Mz)|2(1+~)}1/2 {E { sup ( I M(03941ij)2)2(1+~) }.
. E { 03A3 sup M(03942ij)2} 2(1+~)}

1/4

i j J

_ +C I 2(1+~) ~ 
112 

~E~‘ ~ , (1+E) 
112 

,

where the last inequality has been obtained using (3.5), Doob’s maximal inequality and

Lemma 2.2. of [11].
The same kind of arguments are used for the other terms.

(3) Let A = (z, z’], z  z’. The results proved in part (2) show that

E [fm(M) (0394)/z] = E { 1 2f"m(Mu) dM>u + 1 4f’vm (Mu) d>u/z}, (3.7)
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and using the density of occupation formula

E [fm(M)(0394)/z] = E{ 1 2 f"m(a) L(a,dz) d a + 1 4 f’vm(a)  (a, dz) da/z}. (3.8)

It is simple to verify that

(M) (A) / ‘~Z ~ ) E [ f(M) (~)I‘~Z ~ , (3.9)

and

E[ 1 2f"m(a) L(a, dz) da/ z]E[ 1 2f"(a) L(a, dz) da/ z].

Denote by vi the measure on (F, , (fR )) whose distribution function is given by

v. ~[a,b)~ _ (b) - (a), for all a  b, and i = 1 , 2.

We have

~ ~ 

b 
~ ~ ,

(b) - (a) = ~ (pL)" (~) dx 20142014~ (9’)’ (b) - (9)’ (a) = v~ ([a, b)) .
a

Therefore, on any compact set K C IR, the finite measures {v , m >_ l~ whose

distribution functions are m >_ 1, converge weakly to vi.

By continuity, the path {MZ (ro), z E T~ can only visit the points of a compact set,

therefore the integral

f’vm(a)  (a, 0394) da ( = (03C61m - 03C62m)" (a, 0394) da )

is extended on a compact set K, and the weak convergence of m > 1} to 03BDi entails

f’vm(a)  (a, 0394) da (a, e) v (da) .

Using this fact and the convergences (3.9) we obtain from (3.8)

E / = E 1 f " a I, a dz da + 1 L a dz v da / ‘~ I
R 0394
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= E { J [y f"(a) (j)(z) L (a. dz) da + - L (a, dz) v (da) / ~, } . (3.10)
R 0394

Thus, if {A~, zeT} is the predictable, bounded variation process defined by (3.3), it
follows that

~(z~) ~) = ~(z~j A . ° (3.11)

(4) The equality (3.11) allow us to prove formula (3.2). Indeed, it is known (see e.g.
[3]) that, if X is a predictable process of bounded variation

!~z’ - ..
’ ’ 

(z~]

Hence the proof of the theorem is now complete. D

Remark

For the special case of the Brownian sheet. Theorem 3.1 can be paraphrased as follows:

Theorem 3.2. Let f~2 be such that f" is of class (P). Denote by v the second

derivative of f " in the distributional sense, and let v (da) = (p(a) da + v~ (da) the Lebesgue

decomposition of v with respect to the Lebesgue measure on R.

Then, is a quasimartingale if and only if

E J ! d A~  ~0 ,
T

with

A, = J J (y~’M ~ + -~ "-y ~(~)) L(a,dxdy) ,
~z ~

L being the local time of W with respect to the Lebesgue measure. Moreover

{!y~"(~+ j(da)}L(a,dxdy),
~’ ~ 

for any z~, z~ in T, z~  z~ .
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A result in the same direction has been obtained in [7], where the following
formula is proved.

~(..zj~) = y J’- 0 ~

for z = (x, y), and where {b~ t > 0} is a Brownian motion.
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