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§1. Introduction

1.1 The celebrated good-lambda inequalities of the form

P(XT > YT  ~a)  > (,Q -1)a)

and which are due to Burkholder (see Burkholder ( 1973), play a crucial role in deducing
inequalities of the form

CpllYTllp d optional T,

or, more generally,
EF(XT)  CFEF(YT) V optional T (I.I.I)

where X and Y are positive increasing previsible processes and F is a moderate function
(see, for example,Azéma,Gundy and Yor(1980) Bass (1987), Davis (1987), Barlow and
Yor (1982), and the seminal paper by Lenglart, Lepingle and Pratelli (1980)).

Inequalities such as (1.1.1) are deduced by proving that the constant c(x,y;z),
appearing in

P(XT > x; YT  y) _ c(x, y; z)P(XT > z) V optional T (1.1.2),
has a suitable form. The main result of this paper is

Theorem 5. If X is right continuous and previsible then if x > z > Xo, the best
constant appearing in (1.1.2) is

ya z) _ x~ YS:r:  

where Su = inf{t > 0 : Xt > u}.

1.2 Many interesting processes in martingale theory satisfy the conditions of Theorem
5 and are time-changes of a sub-additive functional of an underlying Brownian motion.

Note de la redaction : :

Ce travail est à rapprocher de 1’article de R. Bañuelos :

A Sharp good - x inequality with an application to Riesz transforms.
Michigan Math. J. 35 (1988), 117-125, cite dans 1’article precedent de ce volume.
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As we shall see in section 3, finding an upper bound for c(x, y; z) then reduces to finding
p(x - z, y) where p(~, ~) is given by:

p(x, y) = sup P(XT >_ Zj YT  y)
optional T

= P(Xoo > x; YSx  y)

Thus verifying the good lambda inequalities reduces to finding good bounds for p(x, y).
Indeed, we shall see in section 4 that better results may be achieved by this direct
approach than have been derived to date.

§2. Good lambda inequalities

We assume throughout this section that X is an increasing process adapted to the
filtered probability space (S2, .~’, t > 0), P) satisfying the usual conditions and Y is
an increasing 7-measurable process.

We define T = {optional (stopping) times T}.

2.1 We consider first an upper bound for c(x, y, z).
Define Su = inf { t > 0 : Xt > u } .

Lemma 2 Suppose X is a.s. right-continuous and x > z then for any T E 7~ :

P(XT  y) ~  x)

so that  

Proof: Fix T and set p = P(XT > x; YT  y)
Since X is right-continuous (XT > x) = (T > Sx) n x), and since Y is

increasing

(YT  y) C (Ys:r:  y) on(T ~ Sx)
so

p _ P(Xs:r: > x~ YS:r:  y; T > sx)

Moreover (Xsx > x) C z) (since z  x) and so, defining

Z = P(Xsx >_ x~ Ysx  

p ~ y) ]

Now,since T is optional, (T > Sz) E (see Dellacherie and Meyer (1978) Theorem
56), whilst z) = (Sx  oo) U ((Sx = oo) n z)) E (by Theorem

56(e) of Dellacherie and Meyer), so

p ~ 
_ ~) D



59

2.2 Since this author is happiest dealing with continuous processes we shall first look
at the converse of Lemma 2 when X is continuous.

First, we define
S’u= 

Lemma 3 Suppose X is continuous, x > w > Xo, and P(Xoo > w) > 0 then

r ~ supT~TP(XT ~ x;YT>y) P(XT > 03C9) ~ ~P(XSx ~ x;YSx  y/FS’03C9)~~.

Proof: Define

and assume wlog that

d = x;YSx  y/FS’w)~~ > 0.

Define, for each a E (0,d) : :

Ta - + 

Now, by continuity Xsw  w so

> w) = P(Zw > a; XSx > w)

Now, since a > 0, we see that (Zw > a) C  oo) C (Xsx > w) so

P(Xrca > w) = P(Zw > a);

moreover

P(Xa > x; Ya  y)
= > x; Ys~  y; Zw > a)
= 

= 

so that r > a) and letting a ii we obtain the result. 0

We may obtain the following corollary by letting w increase (strictly) to z and by
observing that sx = lim Sw

wTTx

Corollary 4 If X is continuous and x > z > Xo then

 

Proof: From lemma 2 we need only prove that

c(x,y;z) ~ ~P(XSx ~ x; YSx  (2.2.1)
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Now

c(x,y;z) = sup P(XT ~ x;Yt  Y) P(XT ~ z)

= sup sup P(XT ~ x; YT  y) P(XT > w) (since P(XT > w) i P(XT > z) as w ~~ z)

= sup sup P(XT ~ x;YT  y) P(XT > w)

> sup (by lemma 3).
wz

Now (Zw; w  z) is a bounded martingale on the filtration (gw ; w  z) =  z)
and so, by the bounded martingale convergence theorem, Zw a’-’ i Z where

Z > x, Ysx _ y)
and

wz 

Now S’w ~~ Sz as w ii z so, by theorem 56 of Dellacherie and Meyer (1978), g = 
and so Z is as defined in Lemma 2. Thus since ~Zw~~ is increasing, 

establishing (2.2.1).

2.3 We can, with a little more effort, deal with the case where X is previsible and
right-continuous. The trick is to observe that if X satisfies these conditions then Sz is
previsible so we can mimic the ( Sw ) optional times by a sequence (Tn ) which announces
Sx.

Theorem 5 Suppose that X is previsible and right-continuous, then if x > z > Xo

y; z) _ >_ x~ Ys~  

Using the same definitions for Z and d as in the proof of lemma 3 we need only prove
that (2.2.1) still holds. We need first to establish the following lemma.

Lemma 6 Under the conditions of Theorem 5 the optional time Sz is previsible.

Proof We need to prove that the stochastic interval [Sz, P, the previsible 03C3-field
(see Dellacherie and Meyer (1978)). Now,since X is right-continuous,

A = ~(t~ w) ~ z~

and so,since X is previsible, D

Proof of Theorem 5: Since Z > Xo and X is right-continuous Sz > 0, and so
we can take a sequence of previsible times Tn such that Tn ii Sz(a.s.) as n - oo



61

(Dellacherie and Meyer (1978), Theorem 71). Note that, since Tn  S’x a.s. and X is

right-continuous, XTn  Za.s. Fix n and a E (0, d) (as before d > 0 wlog) and define

and

T = Tnl(Z"a) 

We see that 
P (X r >_ x; Yr  .

> x)
x)

- -rn,a

Letting a ~~ dn = we see that > ~Zn~~, and, letting n ~ oo we
obtain (2.2.1) using the same argument as in corollary 4 since ?~ a.s. and so

. a
n

Remark: note that we could still conclude, if X was just right-continuous and not
previsible that

for any optional time T  Sx, the predictability of X was only used to ensure the
existence of Sx a.s.

2.4 One might ask whether any lower bound for can be given when X is
not previsible: if we’re prepared to work with (Xt_ ) we can get somewhere. Note that,
setting Xt = X’ is previsible since it is left continuous.

Theorem 7 Define

c (x, y, , x) = 
TE? > x)

c‘(x~ y~ x) >_  (2.4.1)

where S’z is, as before, 0 : Xt > x } .

Proof: Note that, by left-continuity,

= X S~ _  z.

Define Z = P(Xs~+ > x;  y/.~sx ). We assume wlog that
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and, fixing a E (0, d), e > 0; we define

T = T~ = + (sx + + 

Now P(Xr- > z) = P(Z > a; Xr- > z)  P(Z > a), whilst

p(X T- ~ x~ Yr  y)

P(Z > a; (X (s~+~)- ~ x~  y~ sx  ~ >_ x~ Y~  = ~

if we now let e ~~ 0 (observing that Xoo- = X~ def X~+), we see that

c’(x,y;z) ~ P(Z ~ a; XSx+ ~ x;YSx+  y) P(Z ~ a) []

and letting a ii d we obtain the result. D

We can obtain a new converse to (2.4.1) as follows.

Theorem 8 Suppose X is right continuous and x > Xo then

c~(x~ y~ z)  ~ x~  y~.~’S~)~~oo. .

Proof: take z  w  z and define

Zw = p(Xs; >_  

Now for any T E T : P(Xr- > w; Yr  y)
=P(T >  y)
P(T > sw; YS’w  y)

 w; YS’w  y; T > sx)
> since (T > Sx) E 

> z).
Now 5’~ i Sx (not necessarily strictly) whilst w) = (Xoo > w) so (Xsz  x) -

x) = n w) = w) > w), thus

Xj Ys..-  y ) w, Ysw +  y)

and so we obtain the result. D
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§3. Application to sub-additive functionals

3.1 We suppose now that X and Y are non-negative increasing functionals of an
underlying Markov process (~~(w), 8t; t > 0; P,~, r~ E E),where (8t) is the family of shift
operators, and X is continuous. Furthermore we suppose that

Xt(w) - t, (3.1.1)

(note that, since X > 0 and increasing, (3.1.1) is trivially satisfied for t  s),and

 K2Yt (3.1.2)

(see Bass (1987) for an application of these conditions).
Under these additional conditions we have the following theorem.

Theorem 9 The constant c(x, y; z) appearing in Lemma 2 has the following upper
bound: 

~(x~ y; z)  p* 
x _ z 

~ K2y (3.1.3)c(x, y; z) ~ p* (x-z K1, K2y) (3.1.3)

where

p* (u, v) = sup u, YSu  v) (3.1.4)

Proof: Define Ty = inf{t > 0 : y} and 6 = (x - z)/K1. From lemma 2 we need
only x, Ysx  which is dominated by x; Ys~ 

° Now

P(Xsz  x~ Yss  
~ 

~P(~’r, - x - (by continuity)

~ ) (bY 3.1.1

(by (3.1.2))
6)

~ sup ~ 6; Yss ~ K2y)~ ,
r~EE

and,taking the essential supremum of the left hand side of this inequality we obtain the
result D
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§4. General applications

4.1 We need the normal form of the good lambda inequalities.

Theorem 10 Suppose X and Y are non-negative r.v.s satisfying:

P(x > Y  6A)  c(Q, 8)P(X > A) VA > 0 (4.1.1)

then

(i) for any increasing function F with F(0) = 0, for any ~i > 1, ~ > 0,

EF(X A N) - A N) + c(~, ~)EF(~X A N) ,

(ii) if F is moderate with exponent p (sup sup a F ~  l) then, if ~~ > > 1
_ _ _ 

x>0 a>1 1 
" ~ ~ 

s.t.  1 ,

EF(X)  (l V ~i ^pc ~ ~ . (,~, )) (4.1.2)

See Lenglart, Lepingle and Pratelli (1980) for the proof.

4.2 Many pairs of increasing functionals of Brownian motion satisfy

p*(x, y)  k exp(-8x/y) (4.2.1)
where p* is given by (3.1.4)

Theorem 11 Suppose X and Y satisfy the conditions of Theorem 9 and (4.2.1) then

 C(p, k; 8I (K1K2))IIYTIIp V optional T

and Cp = C(p, k ; 6/(Ki Kz )) is 0(p) as p -~ oo.

Proof: From Theorem 9 and (4.2.1)

c(03B2,03B4) ~ k exp(-03B8(03B2-1)/(K1K203B4))

where c(03B2,03B4) = supTsup03BB>0P(XT>03B203BB;YT03B403BB) P(XT~03BB) .

If we now apply Theorem 10 with 6 = (log k + (p + 1) log ~i) (for suitably
large ,Q) and F(x) = xp we obtain 

EXpT ~ (03B2 03B2-1)

p+1

( log k+(p+1) log 03B2 (03B8/K1K2) ) pEYpT
and thus lim C  ~03B2 > 1 []
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4.3 Examples of pairs of functionals of Brownian motion which satisfy the conditions
of Theorem 11 include -

(i) (B;2, t) : 8 = 1/2; Ki =1, Kz = 1 ~ (see Jacka and Roberts
(ii) (t, 8 = n’/8; Ki = 1, K2 = 1 (1988) for details)
(iii) (It , Bt ) : for some 8; Kl = K2 = 1 ~ (see Barlow, Jacka and
(iv) (J?;, it ) : : for some 8; Ki = K2 = 1 J Yor (1986) for details)

Note that (i) implies that

 Cp~T½~p d optional T (4.3.1)

with Cp = 0(pl~z), a result not proved in any of the papers establishing (4.3.1) except
Davis (1976).

Note that, following the method used in Bass (1987) we can establish similar results
connecting and where Ra,t = > 0), and X and Y satisfy
the conditions of Theorem 11.
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