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On Semi-Martingales Associated with Crossings

B. RAJEEV, Indian Statistical Institute

Introduction. Let be a Brownian motion, X~ = x
almost surely, x  a  b. Let a. be the last exit time

of X before t from (a,b)~ , defined in sec. 1.1. We

note that when b = ~ , Xt - X 
= (x. - a)~ and by

Tanaka’s formula it follows that Xt - X at and hence X at ,

are semi-martingales. It is easy to see from Theorem I of [6]
that when b  ~ , |Xt - X j I is a semi-martingale given by

(b-a)c(t) + I = 

where c(t) is the numbers of crossings of (a,b) in time t,

is I during an upcrossing and -1 during a downcrossing

and L(t,.) is the local time of X .

In the case of a continuous semi-martingale (X.,~),
where ~. is the underlying filtration and at as above,

it is an immediate consequence of Tanaka’s formula that

are semi-martingales (Theorem 2.1).

In this case, time changing by at does not change the under-

lying filtration. In this paper, as our main result we

determine the martingale and bounded variation parts of I
(Theorem 4.1). In sec. 5, we state a few applications of this 

result. These include Levy’s crossing theorem, an asymptotic

relationship between local times and crossings of Brownian

motion and a probabilistic approximation of the remainder

term in the 2nd order Taylor expansion of a function.
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1. Preliminaries

Let (.0-~~ P) be a probability space and 
a filtration on it satisfying usual conditions. For a conti-

nuous adopted process and a  b, the upcrossing inter-

vals (03C32k, 03C32k+1], k = 0,1,2,..., are defined by 03C30 = 

o~~ = inf ~s > and ~~ ~2k ~ ~s -~- ~ ’ *
As usual the infimum over the empty set is infinity. The down-

crossing intervals = 0,1~... are similarly

defined. Let ~(s) = ? 1. ,_ i(s); C~(s) = E I. _ i(s)k=O k=O ~2k~2k+l~
and ~(s) = ~5~- 6’~). The number of upcrossings in time t ~

denoted by U(t) is defined as U(t) = max.{k : i tT- ’

The number of downcrossings is similarly defined. C(t) = U(t)+D(t)

is the total number of crossings. Let T= inf X / (a,b)} .
t t ~ 03C4

Let 03C3t =  max 

 s  : Xs t(a,b)c , t >03C4

at is in general not a stop time, but is however ~ measurable.
Consequently is ~.. " measurable.

2. The Semi-Martingale X.,
From now on we fix a continuous ~. - semi-martingale

~t Let be a jointly

(t,x,w) measurable version of the 
local time of X which

is continuous in t and right continuous in x . 
For the

existence of such versions see [10]. Let Yt = Xt - X~
and Z~ = .

Theorem 2.1. The process Yt is an ~ semi-martingale

and we have

Yf = ~ I(a,b]~s~s ~ ? ~~’~ - ’~’’~ - 
~~

- rt
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Pr, oof. The proof is immediate from Tanaka’s formula and the

following pathwise identity :

(X 03C4t - Xo) + (b-a)[U(t)-D(t)] + (Xt-X03C3t)

= (Xt-a)+ - (Xo-a)+ - (Xt-b)+ + (x o-b)+ (2 )

Remarks.

2.2 It is immediate from Theorem 2.1 that X 
t 

is also

a semi-martingale whose components can be got by subtracting

(Xt) from both sides of eqn. (1).

2.3 The sum of the jumps of Y in time t - E -

st 
s

is precisely (b-a)[D(t)-U(t)] . Since D(tT)  1

this implies that Y (and hence Z) is a special semimartingale.

Further the representation (1) of Y t is unique (see [9]). The

jump times of these processes are precisely the times of crossings

of (a,b) by X and I L1 Ys I = b-a or 0.

2.4 Equation (2) and hence Theorem 2.1 are still valid for

a semi-martingale (Xt) with E j 1 0394Xsl t, almost surely.
" 

s~t 
~ 

.

Now (b-a)[U(t)-D(t)] is replaced by - E AY and

- - 

s

Xt-a) , (Xt-b) are replaced by ~ X t _a ~ + - ~ ,

(Xt-b)+ -  0394(Xs-b)+ respectively.

3. Local times of Xt-X03C3
t

We now determine the local times of Y in terms
of that of X. We note that the process lives in [0,b-a)
during an upcrossing of (a,b) and in (-(b-a ),O] durin g a
downcrossing. Also Yt = 0 whenever X~ = a or b. Let
I(t,x) denote the local time of the Y process.
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Lemma 3.1

(i) For x e [0,b-a),

(Yt-x)+ = tt I(a,b](Xs)I(x,~)(Ys-)dXs -(b-a-x)U(t)+ 1 2I(t,x) (3)

(ii) For x s (-(b-a),0]

= - ~~ / 5-I(t,x)

. t t
+ 1 2 ( I (-~, x] (Ys- )L(ds,b)- I (-~, x] (Ys-)L(ds,a)) (4)

Remark 3.2 Observe that in case x  0, the 2nd term on the

RHS of (4) is zero whereas when x = 0 it is ~- 
Proof. Tanaka’s formula (see [4]) applied to Y at the

point x e gives

+ X I (Y. )(Y -x)
0sit (x,~) ~ ~ ’

+ E I (Y. 
0sit (--,x] 

~ ~

= lo+ii +12+13+~1~~) ’ *

Since 0 , Io =. 0’ Using (2) for Y~ and noting

that the measures L (ds , a ) , L (ds , b ) , D ( ds ) have no support

on the set s : Y~_ >x we get

I.(t) " = / Tf I 
(a.b] (x,-) 

(Y )dX -(b-a)U(t) .

Since the jumps occur at the crossing times c~~+~ ~

T it is easy to see that almost surely for x s [0,b-a),

I (t) = x U(t), 1~(1) =. 0 . This proves the first part of the lemma.

The proof of (4) is similar using the Tanaka formula for (Y~-x)".
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. The following theorem gives I in terms of L.

Theorem 3.3

(i) For x e (O,b-a), almost surely,

t
I(t,x).- f (5)

0

(ii) For x E (-(b-a),O), almost surely,

t d
I(t,x) = f 9 (s)L(ds,b+x) (6)

0

(iii) For x = 0, almost surely,

I(t,0) - L(t,a) (7)

Proof.

(i) Let x E (O,b-a). Fix k > O . Let 

Y (t) - (Xt - (a+x ) ~+. We note that, + t s 
~ 

t t

f I = f I (s)dy2(s) (8)
o (~2k’~2k+1~ 0 

By Tanaka’s formula,

t t

f 0 I 

(~2k’~2k+1~ 
dY2(s ) = f 0 I 

t°~2k’a2k+1~ 
(s )I 

(a,b] 
(Ys-)dXs

, + 2 1 (L(tA .

By eqn. (3 ), ~ t E 

t t

f I f I (s )I (Xs )I ( Ys-)dXS
0 (~2k’o2k+1~ 0 (o2k’o2k+1~ (a,b~ 

+ 1 2 (I (t  03C32k+1,x)-I(t Q 2k ,x))
eqn. (8) now implies that + t > 0 ,

I(tA Q2k+1’X) - I(tA Q2k,x) - 

since I(ds,x) is supported on the upcrossing intervals,

the proof of (i) is complete.

(ii) Let x e (-(b-a),O). Then (Yt-x)- and
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Y2(t) = (Xt-(b+x)) - agree on the downcrossing intervals.

Applying Tanaka’s formula for Yl and eqn. (4) to Y2 the

proof is completed as in (i) above.

(iii) Let x = 0. Proceeding as in case (i) we show that

t03B8u(s)I(ds,0) = t03B8u(s)L(ds,a) = L(t,a).

To complete the proof we show that = 0 .
0

To see this we fix k and as in case (ii), compare the

expressions for (Xt-b)- and (Yt)- 
given by Tanaka’s formula and eqn. (4) respectively. Using

Remark 3.2 we see that

L(tA ~2k’b) + T2k+1’~) - 

= L(tA ~2k+1’b) - ~2k’b)
whence ~2k+1’0) - I(t ~ ’t2k,0) - 0 .
Remarks. 

°

3.4 We recall from [10] that for the semi-martingale

(Xt) with - Xs + Xt = X.. + Mt + Vt, where M and

V are the continuous martingale and bounded variation

parts respectively, the jumps of the local time L(t,x) is

given by the formula : almost surely,

t

L(t,x) - L(t,x-) = 
= 

(9)

Using (9) it is easy to see that for x e (O,b-a), I(t,x)

is continuous at x if L(t,.) is continuous at a+x.

The case x e (-(b-a),O) is similar. When x = 0, it is

easy to see that I(t,O-) - L(t,b-) # L(t,a).

3.5 Let I(t,x) denote the local time process of

Zt = X . The martingale, bounded variation part and the
" at

jumps of Zt are easily calculated from eqn. (1). By using

Tanaka’s formula it is easily verified that I(t,x) = L(t,x),
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+ x e U I(t,a) = 0 and I(t,a) = 

Vxe (a,b) .

4. The Semi-Martingale jXt-X at )

We now determine the continuous martingale and the

continuous bounded variation parts of ~. We note

that the sum of the jumps upto time t is -(b-a)c(t)o

Theorem 4.1 For a  b, we have almos t surely,

(b-a)c(t) + ) 0 f 
t 

(a,b) 
2(L(t,a~+L(t,b-)) 1 (10)

Proof. Lemma 3.1 and Theorem 3.3 together give

)~ + )"

t
= 

f zt (I (0~~) (Ys-) - I (-~~0] (Ys-) )I 
- (b-a)c(t) + 2 1 (L(t,a) + L(t,b))
t

= 0 f (b-a)c(t)

+ 2 1 (L(t,a) + L(t,b-))
where in the last equality we have used eqn. (9).

Remark 4.2 We refer to [6] for an analogous result on

crossings of closed intervals by a continuous martingale.

5. Applications

We now give some applications of the previous results.

We mention only the results and refer the proofs to [5], [6]
and [7].

Firstly we note that letting a 1 b in Theorem 4.1

eqn. (10) yields Levy’s crossing theorem. We note that if

E 1  e ~ e2 then e 1 C~ (t) i e e 2 where
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C (t) = number of crossings of (b-e,b) in time t = C((b-s,b),t).
Hence sufficient to let a t b along a sequence. This is done

via the Borel-Cantelli lemma and an estimate due to Yor

(Theorem 1, [10]). The following theorem (Levy’s (down)

crossing theorem) was first proved in the case of a continuous

semi-martingale in El Karoui [3] where the discontinuous case

is also discussed.

Theorem 5.1 Let (Xt) be a continuous semi-martingale. Then

(a) almost surely, Lt (b-a)C((a,b),t) = L(t,b-)
at b

Lt (b-a)C((a,b),t) = L(t,a)
bJ, a

(b) If further (Xt) e HP , p L 1 then the above limits hold

in Hp .

Next let (Xt) be a Brownian motion. We now state

a result somewhat related to Theorem 5.1 above and whose

proof can be found in [6], [7]. The crossing theorem say,

that L(t,a) as b ~ a, the parameter t being

fixed. It is an interesting fact that the same is true when

we let t --~~~ . . We have the following theorem.

Theorem 5.2 Let (Xt) be a Brownian motion and a  b.

Then almost surely,

t  ~ L(t,a) C((a,b),t) = Lt 
E L(t,a) E C((a,b),t) = (b-a)

Remark 5.3 The proof of the 2nd equality is immediate from

Theorem 4.1 and Theorem 2.1

Corollary 5.4 Let a  b, d  e. Then almost surely,

C((a,b),t) C((d,e),t) = t E C((a,b),t) E C((d,e),t) = b-a e-d

We continue with a Brownian motion (Xt). The following

result gives the average sojourn time in (a,b) per crossing.
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Theorem 5.3 If (Xt) is a Brownian motion and a  b, then

almost surely,

I(a,b)(Xs)ds C((a,b),t) = EI(a,b)(Xs)ds E C((a,b),t) = (b-a)2

We refer to [8] for a proof of this result. The 2nd

equality is an immediate consequence of Theorem 1, [5] which
is also proved in [11]. ’Ne refer to [1] for a more general
result in the context of Hunt processes and to [2] for related
results involving recurrent diffusions. The following is a

different generalization of Theorem 5.3 and can be thought off

as a random approximation to the remainder term in a 2nd order

Taylor expansion for a C2-function. For the proof of this
result see (6~, [7].

Theorem 504 Let (Xt) be a Brownian motion, a  b, and f

a C2-function. Then almost surely,
tO 

f" ( |Xs-S03C3s |_ )I( a,b)(Xs )ds C((a,b),t)

EtO f"( |Xs-X03C3s |_)I(a,b)(Xs)ds
" 

t ~ ~~ Lt ~ E C((a,b),t) --

= f {b-a )-f {U)-f’ {U ) (b-a ).
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