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A note on large deviations for Wiener chaos

by Michel Ledoux

The result of this note is well-known and familiar (it is presented for ex-
ample, using standard techniques, in the recent work [D-S]). Its purpose is to
describe the usefulness and interest of isoperimetric methods in large deviation
theorems and we present here a simple isoperimetric proof of the large deviation
properties for homogeneous Gaussian chaos (even vector valued). The approach
suggests some possible further use of isoperimetry in this type of question.

The proof we give is based on, and may be considered as a simple outgrow of,
the study by C. Borell [Bo3], [Bo5]. This exposition was actually the opportunity
for the author to try to understand and hopefully clarify for the possible readers
some aspects of the deep and unfortunately somewhat difficult to read work by
C. Borell that develops all the necessary material for the study of this problem.

Let be an abstract Wiener space. That is, let E be a real Banach
space with Borel 03C3-algebra B and dual space E’. Let further  denote a centered
Gaussian Radon probability measure on (E, B) in the sense that the law of ~ E E’

under J.L is a real mean zero normal yariable with variance (~, xy2d~c(x). By
the closed graph theorem, the injection map jE~ 2014~ L2 (~c; IR) = L2 ( (E, ~c); IR) is
continuous. Since J-L is Radon (i.e. supported by a separable subspace of E), it
follows further that for each ~ in E’, the weak integral defines

an element of E. By density, one can map any element ~o of the closure Eg
of E’ in into an element A(~p) = of E and this map is

linear and injective. Define then H to be the range of A. Equipped with the
natural scalar product = H is a separable Hilbert
space (with norm denoted by |.|), dense in the support of  and known as the
reproducing kernel Hilbert space of the measure Its unit ball (? is a compact
subset of E. For any orthonormal basis of E2, ~c has the same distribution
as ekA(ek). (This fact puts forward the fundamental Gaussian measurable

structure consisting of the canonical Gaussian product measure on IRIN with
reproducing kernel Hilbert space ~2). If h = is an element of H, we set
for simplicity h = A-l(h) = ~p; under h is Gaussian with variance ~h 2. Recall
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finally the Cameron-Martin translation formula [C-M] that indicates that, for any
h in H, the probability measure p(. + h) is absolutely continuous with respect to

with density exp(h(.) - 
This classical construction (see e.g. [Nel], [Ku], [Fe], etc) may be extended

to locally convex Hausdorff vector spaces E equipped with a Gaussian Radon
probability measure p ([Bo2]), but, for the modest purposes of this note, we re-
strict ourselves to the preceding setting. As an example also, let us mention the
classical Wiener space associated with Brownian motion, say on [0,1] for simplic-
ity. Let thus E be the Banach space Co([0,1]) of all real continuous functions x on
[0,1] vanishing at the origin and let p be the distribution of a standard Brownian
motion starting at the origin . If m is a finitely supported measure
on [0,1], m ci E IR, ti E [0,1], clearly h = A(m) is the element of E

i 
’

given by
~ i

i

it satisfies

h’(t)2 dt = °

By a standard extension, the reproducing kernel Hilbert space H associated to
p on E may be identified with the absolutely continuous elements h of C0([0,1])
such that 10 h’(t)2 dt  ~ and h = 10 h’(t)dB(t).

Let C E’ be any fixed orthonormal basis of Eg (take any weak-star
dense sequence of the unit ball of E’ and orthonormalize it with respect to 
using the Gramm-Schmidt procedure; we choose it in E’ for convenience and
without any loss in generality). Denote by the sequence of the Hermite

polynomials defined from the generating series
00

exp(ax - a2~2) = ~ E IR.
k=0

( k! hk) is an orthonormal basis of L2(03B3; IR) where 03B3 is the canonical Gaussian

measure on IR. If a = (ao, al, ...) E i.e. = ao + cxl + ~ ~ ~  oo, set

Ha = 03B1! 03A0h03B1k o ek
k

(where Of! = ao!al! ~ ~ ~ ). Then the family (Ha) constitutes an orthonormal basis
of IR).

Let now B be a real separable Banach space with norm ~~ ’ ~~. Lp((E, ~c); B) =

B) (0  p  oo) is the space of all Bochner measurable functions f on (E, ~)
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with values in B (p = 0) such  oo (0  p  oo). For each integer
d, set

B) = {f E B); f,H03B1~> = J fH03B1d  = 0 for all a such that ~ d}.

~-l~d>(~,; B) defines the B-valued homogeneous Wiener chaos of degree d [Wi]. An
element f of ~-l~d>(~c; B) can be written as

f = ~ (f,Ha) Ha

where the multiple sum is convergent (for any finite filtering) p-almost everywhere
and in B). (Actually, as a consequence of ~Bo3~, (Bo4~, or the subsequent
main result, this convergence also takes place in B) for any p.) To see it,
let, for each n, Bn be the sub-03C3-algebra of B generated by the functions eo, ... , en
on E and let fn be the conditional expectation of f with respect to Bn. Recall
that B may be assumed to be generated by (ek)kEIN. Then

(i) /.= E ~f Ha

as can be checked on linear functionals, and therefore, by the vector valued mar-
tingale convergence theorem (cf. [Ne2]), the claim follows.

As a consequence of the Cameron-Martin formula, we may define for any f
in B) and h in H, a new element f (~ + h) of B). Further, if f is in

B), for any h E H,

(2) f  exp(lhI2/2) ( J 
1/2 

.

Indeed,

J + = exp((x) - |h|2/2 ~f(x)~ du(x>

from which (2) follows by Cauchy-Schwarz inequality and the fact that h(.) is
Gaussian with variance 

Let f be in B). By (2), for any h in H, we can define an element
of B by setting

= J f (x + h) 
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If f E ?-~(d) (~c; B), f(d)(h) is homogeneous of degree d. To see it, we can work by
approximation on the f n’s and use then the easy fact (checked on the generating
series for example) that, for any real number A and any integer k,

+ a) d1’(x) = ~ .

Actually, f(d)(h) can be written as the convergent multiple sum

f (d)(h) _ h«

where h« is meant as eo(h)«°el(h)«1 ~ ~ ~ .
Given thus f in ?~(d)(~c;~B), for any s in B, set = ~h~2/2 whenever

s = f ~d)(h) for some h in Hand = +oo otherwise. For a subset S of B, set
If(S) = If(s).

We can now state the large deviation properties for the elements f of
?-~(d)(~C; B) (see thus [D-S]). We give a new and isoperimetric proof of this re-
sult. The case d = 1 of course corresponds to the classical large deviation result
for Gaussian measures (cf. e.g. [Az], [Stl], [D-S], ...). In order to emphasize the
interest of isoperimetric methods in this context, we briefly describe below the
proof of the upper bound in the case d = 1 (and for p itself, that is for f the
identity map on E = B). The proof for higher order chaos will be simply an
appropriate extension of this argument.

THEOREM. Let = ~u(~-1~2(~)), ~ > 0. Let d be an integer and let f be
an element . Then, if F is a closed subset of B,

~-~a

If G is an open subset of B,

(ii) E G~ > 
" ’ ~-~o

The proof of part (ii) of the theorem follows rather easily from the Cameron-
Martin translation formula. Part (i) is rather easy too, but our approach thus
rests on the deeper tool of isoperimetric inequalities (first used in the context
of large deviations by S. Chevet [Ch]). The isoperimetric property of Gaussian
measures ~c indicates that if A is a Borel set with measure ~C(A) _ ~y((-oo, 
a E ~-oo, +~~, , where ~y is the canonical Gaussian measure on IR, then, for all

t > 0,

(3) + > a + t~)
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where 0 is the unit ball of H and A + {a + th; a E A, h E C~~ (that is
not necessarily measurable justifying therefore the use of the inner measure). In
other words, half-spaces are extremal sets for the isoperimetric property on Gauss
spaces (E, ~u). The isoperimetric inequality (3) has been established independently
in [Bol] and [S-T] as a consequence of the isoperimetric inequality on the sphere
via the Poincare limit (see [MK]) ; a more intrisic proof was given by A. Ehrhard
[Eh]. We will use it in its following simple consequence : if ~c(A) > 1/2, for all
t>0,

(4) + > 1- exp(-t2/2)
(take a = 0 in (3)). In this form, or in a slightly weaker formulation, it may be
obtained from rather simple considerations (using for example stochastic calculus)
as was shown by B. Maurey and G. Pisier (cf. [Pi], [Le]).

As announced, let us briefly show, using (4), the upper bound (i) for with
for simplicity B = E and f the identity map. Let thus F be closed in E and take
0  r  inf ~h~2/2 so that (2r)1~2C~ n F = ~. Since C~ is compact in E, there is

hEF 
’

6 > 0 such that

((2r)1~2~ + 6U) n F = ~
where U is the unit ball of E. We can then simply write that, for all é > 0,

 x ~ + (2r/~)1~2C~).
Since, for é small enough, ~c(b~-1~2U) > 1/2, we immediately get that

 exp(-r/~)
which gives the result since r  inf |h|2/2 is arbitrary.

The proof of (i) also sheds some light on the structure of Gaussian polyno-
mials as developed by C. Borell, and in particular the homogeneous structures.
As is clear indeed from [Bo3], [Bo5] (and the proof below), the theorem may
be shown to hold for all Gaussian polynomials, i.e. elements of the closure in

B) of all continuous polynomials from E into B of degree less than or equal
to d. As we will see, ?~{d~ (~c; B) may be considered as a subspace of all homo-
geneous Gaussian polynomials of degree d (at least if ~c is infinite dimensional),
and hence, the elements of x{d~(~; B) are p-almost everywhere d-homogeneous.
In particular, (i) and (ii) of the theorem are equivalent to say that (changing
moreover ~ into t-2)

(i’) limsup 2 E tdF)  

and

(ii’) 1 t2 log (x;f(x) E tdG) _ > 
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and these are the properties we will actually establish.

Before turning to the proof of the theorem, let us mention a few applications
and illustrations. If we take F and G in the theorem to be the complement U~ of
the (open or closed) unit ball U of B, one checks immediately that

If(Uc) = 1 2 (~f(d)(h)~)
-2/d

so that .

1 t2/dlog (x;~f(x)~ > t) = -1 2(~f(d)(h)~)
-2/d

.

In particular, when d = 1, ,

~f(1)(h)~ = (03BE,f(x)>2d (x))
1/2

.

U /

In the setting of the classical Wiener space E = equipped with the
Wiener measure and when B = E, K. Ito [It] (see also and the recent ap-

proach [St2]) identified the elements f of E) with the multiple stochastic
integrals

f = (t0 t10 ...td-10g(t1,

... ,td) dB(t1) ...dB(td))

t[0,1]

where g deterministic is such that

t0t10 ... td-10 g(t1, ... ,td)2dt1 ... dtd ~.

If h belongs to the reproducing kernel Hilbert of the Wiener measure, then

i e jo ,ij 
.

Proof of the theorem. Let us start with the simpler property (ii). Recall
fn from (1). We can write (explicitely on the Hermite polynomials), for all x in
E, h in H and t real number,

d

_ 

k=0
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If P(t) = ao + alt + ~ ~ + adtd is a polynomial of degree d in t E IR with
vector coefficients ao, al, ... ad, there exist real constants c(i, k, d) , 0  i, k  d,
independent of P, such that, for all k = 0, ... , d,

d

a~ = c(0, k, d)P(0) + ~ c(i, k, 
iW

Hence, for all h,

d

.fn~~~’~ h) = ~, + ~ c(i, k, + 
2=1

from which we deduce together with (2) that, for all k = 0, ... , d,

/  C(k’ d§ h) ( / 
for some constants C(k, d; h) thus only depending on k, d and h E H. In the
limit, we conclude that there exist, for every h in Hand k = 0, ... , d, elements
f ~~>(~, h) of L1(~c; B) such that

d

f(. + th) = ~ h)
k=0 .

for all t E IR, with

~ _ ~~ ~> ( / 
1/2

and f ~°~(., h) = f(.), f~d>(.~ h) = (since J f~x + th) = td 
As a main consequence, we get that, for all h in H,

(5) 1 td ~f(x + th) -tdf(d)(h)~d (x)= 0.

This limit can be made uniform in h E C~ but we will not use this observation in
this form later (that is in the proof of (i~ ; we use instead a stronger property, (7)
below) .

To establish (it), let s = h E H, belong to G (if no such sexists,
then = and (ii) then holds trivially). Since G is open, there is b > 0
such that the ball B(s, 6) of center s and radius 6 is contained in G. Therefore,
if A = A(t) = E by Cameron-Martin,

.f (x) E >_ = - 
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Further, by Jensen’s inequality,

~(~) ~ exp(-~!~f/2)~(~ - ~) th) 
°

By (5),

th) = + th) -  5~) ~ ~
for all t ~ to large enough. By centering and Cauchy-Schwarz,

y ~)~)’~ ~ -~.
Thus, for all t ~ to,

t (A-th)A-th
(x)d (x) ~ -2t|h|,

and hence, summarizing,

6 > (-~’!~!’ - °

It follows that

1 t2 log (x; f(x) ~ tdG) ~ -|h|2 2 = -If(s)

and since s is arbritrary in G, property (ii’) is satisfied. As a consequence of what
we will develop now, (ii) is satisfied as well.

We now turn to (i) and in the first part of this investigation, we closely follow
C. Borell [Bo3], [Bo5]. We start by showing that every element f of ~~(/~; jB) is
limit (at least if the dimension of the support of p is infinite), ~-almost everywhere
and in L~(~;B), of a sequence of d-homogeneous polynomials. In particular, f
is ~-almost everywhere d-homogeneous justifying therefore the equivalences be-
tween (i) and (ii) and respectively (i’) and (it’) . Assume thus in the following that
p is infinite dimensional. We can actually always reduce to this case by appro-
priately tensorizing p, for example with the canonical Gaussian measure on IR .
Recall that / is limit almost surely and in B) of the of (1). The finite
sums ~ can be decomposed in their homogeneous components as

/.=~+~+---~

where, for any x in E,
00

(6) /~)= ~ ~,...~~)e~)...e~)
!l,...,tt=0
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with only finitely many in B non zero. The main observation is that the
constant 1 is limit of homogeneous polynomials of degree 2 ; indeed, simply take

pn(x)=1 n+1ek(x)2.n + 
~==0

Since p~ and belong to IR) and B) respectively for allp, and since
1 tends there to 0, it is easily seen that there exists a subsequence mn of

the integers such that (p~, - 1)(/~’~ + /~’~ +...) converges to 0 in B) .
This means that f is limit in B) of + /~’~ +...), that
is limit of a sequence of polynomials /~ whose decomposition in homogeneous
polynomials

~ - f~) . f~(~-2) + ...
is such that /~~B or /~) and /~~B according as d is odd or even, can be taken
to be 0. Repeating this procedure, f is indeed seen to be limit in L~;.B) of a
sequence (gn) ofd-homogeneous polynomials (i.e. polynomials of the type of (6)).

The important property in order to establish (i’) is the following. It improves
upon (5) and claims that, in the preceding notations, i.e. if f is limit of the
sequence (gn) of d-homogeneous polynomials,

(7) lim : sup + ~) - o.
n 

To establish this property, given
00

= ~ 

(with only finitely many ~ ~ non zero), let us consider the (unique) multilinear
symmetric polynomial ~ on such that ~(:r,..., :r) = ~ is given by

00

n(x1,...,xd) = bni1 ,...,id ei1 (x1)...eid(xd), x1,..., xd ~ E,

where

ni1,...,id=1 d! 03A3bn03C3(i1
),...,03C3 (id),

° 

cr

the sum being running over all permutations cr of {1,... ,d}. As is well-known
[M-0], [B-S], we have the following polarization formula : letting ~i,.... ed be in-
dependent symmetric Bernoulli random variables and denoting by IE expectation
with respect to them,

(8) ~(~i,..., ~d) = . + ... + ~i ... 



10

We adopt the notation for (x, ... x, y, ... , y) in Ed where x is repeated
(d - k)-times and y k-times. Then, for any x, y in E, we have

(9) + y) - 
k=0

To establish (7), we see from (9) that it suffices to show that for all k =1, ... , d-1,

(10) sup  oo.

n 

Let k be fixed. By orthogonality,

sup 

 sup sup (~, gn(x, ... , x, hl ... , 
I1

2
00 00

 03BE,ni1,...,id>ei1(x)...eid-k(x)
= sup ... 03BE, n(x,... ,x, y1,...,yk)>2d (y1) ...d (yk)

 / -" / Ilg,~(x, ... , x, yl, ... ... 

By the polarization formula (8),

9n(x, ... , x, y1, ... , yk) = ~ ~1 ... 

Therefore, we obtain from the rotational invariance of Gaussian distributions and

homogeneity that

(d!)2 / sup j 1

+ + + ~1y1 +. + 

=IE / + . - - + + 

+ ... + + ~)dl2) °

Hence (10) and therefore (7) are established.
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We can now conclude the proof of (i’~ and thus of the theorem. It is intu-
itively clear that

(11) lim sup - f ~d~(h)~~ = 0.

This property is an easy consequence of (7). Indeed, for all n and t > 0,

sup 

 sup sup d J th~ 

+1 td~gn(x+th)-f(x+th)~d (x)

~ ~gm(h)-1 tdgm(x+th)~d (x)

+ sup 1 td ~gn(x + th) - f(x +th)~d (x)

and, using (2) and (7), the limit in n and then in t yields (11). Let now F be
closed in B and take 0  r  The definition of indicates that

(2r)d~2 n F = S where we recall that C~ is the unit ball of H, compact in
E. Therefore, since is clearly seen to be compact in B by (11), and since
F is closed, one can find 6 > 0 such that

(12) ((2r)d~z f(d)(C~) + 26U) n (F + bU) = 0
where U is the (closed) unit ball of B. By (11), there exists no = no(6) large
enough such that for all n > no,

(13) C (2r)d~z f ~d>(C~) + bU.
Let thus n > no. For any t > 0, we can write

E 

(14) _ - > + 9n(x) E + sU))
 u(x; - 9n(x) II > + x ~ A+ 

where

A = A(t, n) = {a; sup + t 2rh) -  b}.

To justify the second inequality in (14), observe that if x = a+t2rh with a E A
and ~h~  1, then

t 
= 

t + - + 
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so that the claim follows by (12), (13) and the definition of A. By (7), let now
to = to (6) be large enough so that, for all t > to,

/ sup + t 2rh~ -  2 °
~ ~ J 2

That is, for all n and all t > to, n)) > 1/2. By (4), it follows that

(15)  exp( -rt2).
Fix now t > to = to(6). Choose n = > no = no(6) large enough in order that

Ilf(x) - > 6td)  exp( -rt2). °

Together with (14) and (15), it follows that for all t > to,

E  2 

r  being arbitrary, the proof of (i’) and therefore of the theorem is
complete.

Note that it would of course have been possible to work directly on f rather
than on the approximating sequence (gn) in the preceding proof; this approach
however avoids several measurability questions and makes everything more ex-
plicit.
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