
SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

WILHELM VON WALDENFELS
Illustration of the quantum central limit theorem
by independent addition of spins
Séminaire de probabilités (Strasbourg), tome 24 (1990), p. 349-356
<http://www.numdam.org/item?id=SPS_1990__24__349_0>

© Springer-Verlag, Berlin Heidelberg New York, 1990, tous droits réservés.

L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail.
mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou im-
pression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SPS_1990__24__349_0
http://portail.mathdoc.fr/SemProba/
http://portail.mathdoc.fr/SemProba/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Illustration of the Quantum Central Limit Theorem by Independent
Addition of Spins

Wilhelm von Waldenfels

Institut für Angewandte Mathematik
University of Heidelberg
Im Neuenheimer Feld 294

D-6900 Heidelberg
Federal Republic of Germany

Coin tossing is one of the basic examples of classical probability. The distribution of the
number of heads in N successive tosses can be calculated explicitely. It is given by the binomial

distribution which converges to the normal distribution for N --~ 00 . This is the content of the

theorem of de Moivre-Laplace, which can be proved by using Stirling’s formula. There are more

powerful central limit theorems and more elegant proofs, but nevertheless the theorem of de Moivre-

Laplace provides an easy access to the central limit theorem where the convergence can be seen

nearly by looking with the naked eye.
One of the easiest non-trivial examples of quantum probability is provided by independent

addition of spins. The limit distribution is a non-commutative gaussian state. This has been proven
by many previous papers e.g. [1], [2], [3]. The object of this paper is to calculate the distribution

explicitely for finite N and to indicate how for large N the limit distribution is obtained The central
limit theorem will not be proven but only the asymptotic behaviour will be discussed.

Let us at first state the quantum central theorem in this context. We consider the spin matrices

(1) 03C31 = 1 2(0 11 0), 03C32=1 2(0 i-1 0), 03C33=1 2(-1 00 1)
and their linear combinations

(2) a+ = al + ia2 = 0 1 0 ~ 0 ~-i~(~). 
The table of multiplication is given by

03C31 03C32 03C33
(3) 

03C31 
’ 1 4 2 i a3 ^2 i a2

.. 1 2 a3 ~ 4 ~.al 2 .

a3 _ i 2 a2 2 i al 4 1
A state o on the algebra M2 of complex 2x2-matrices is given by a density matrix p which we
assume to be given in the form
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(4) p _ (03C11 0 0 - 1/2 + z 0 )o p2 0 1I2 - z

OSp;_1 , , 03C11 + 03C12 = 1, 03C11 ~ 03C12, 0-z51/2 . .

This is the most general case as any density matrix can be brought into that form by a unitary

change of base and as the Ql by a unitary change of base are transformed into linear combinations 
of

the Q;. then

(5) w (A) = Tr p A

so

(6) w (al) = w (a2) = 0, w (a3) = 1 2 (P2 - Pl) _ -z .
Consider and (M2)®N and on this algebra the state given by the density matrix

p®N. Define
(7) o~N)=a;®1®...®1+1®Q;®1®...®1+...+1®...®l~a; . .

The quantum weak law of large numbers states in its simplest form, cf. [2] : let f be a polynomial
in three non-commutative indetenninates, then for N 

(8) 03C9~N( f(03C3(N)1 N, 03C3(N)2 N, 03C3(N)3 N)) ~ f(03C9 (03C31) , 
03C9 (03C32) , 

03C9 (03C33)) = f( 0, 0, -z) .

Roughly speaking the quantities / N behave for large N like the constants w 

quantum central limit theorem states for any such polynomial f

(9) f - w ( Q;) 
~ i =1~ 2~ 3 = w f , 

a 2N) 
, 
a 3N) + 

~ 

there Q is the covariance matrix

( 10) w (a;ak) - w w (at)

which can be easily calculated with the help of (3).

1 - i1 0
4 2

(11) Q = + iz 2 4 0 - 

0 p 1 4 - z2
with

(12) Q1 - 1 4 - iz 2 ) , Q2 = 1 4 - z2.
+ iz 2 1 4
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For p2  pl, z > 0 the gaussian functional YQ may be considered as a state on the tensor product of

(N)~, ( i.e. the bounded operators on l2 (N), N = {o,1, 2, ... }) and L°° (R)
(13) 7Q = yQ, ® 7Qa : B~~~N)) ~ L~ (R) --~ C

with
«

(14)

where ek is the k-the vector of the standard basis,

(15) = 2014=. = 

and

(16) gq(ç) = 1 203C0qexp-03BE2/2q .

So 03B3Q2 is a classical gaussian probability distribution. We shall not consider the degenerate case
z = 0, PI = p2, where ~ is the tensor produced of threee gaussian probability distribution. In (9) ç

and 11 are unbounded operators on l~ (N) given by the equations

(17) a = 03BE-i~ 2z, * _ 03BE+i~ 2z

where 
0 0 0 0 0 1 0 0
1 0 0 0  0 0 2 0

0 2 0 0 0 0 0 3(18) a = 0 0 3 0, a* = (0 0 0 0
...... 

are the wellknown annihilation and creation operators. It is clear that can be extended to any

polynomial in a and a* and hence to any polynomial in 03BE and ~ . The variable 03B6 in (9) may be just a
real integration variable as in ( 15).

We want to make these results a bit more transparent by discussing them more explicitly for
large N.

We observe the have the same commutation rules as the Ql

( 19) ~a‘1N) ~ 62N)J _ 
(and cyclic permutations) so they form a representation of the spin operators or, what amounts to the

same, of the Lie algebra of the group SU (2). We use that fact in order to split into invariant

subspaces.
Let V be a finite dimensional unitary vector space and let S2, S3 be hermitian operators on

V with the commutation rules

( S1, S2 ) = iS3 , ....
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Then

(21) S2 - S i + Si + S3 .
Define

(22) S t = S 1 ± iS2 .

Assume at first that V is irreducible. Then it induces an irreducible representation where  may
take one of the values f= 0, 1/2, 1, 3/2, 2,.... The dimension of V is 2l+1. It is possible to
introduce an orthogonal basis m = - ~,- f+ 1,..., + f in V, such that

(23) S303C8m = m03C8m

= 

= 

~~~+l~ ~m .

If V is not irreducible, it can be split into irreducible parts. This means e.g. it is possible to
introduce a basis with

(24) (0,1/2,1, 3/2,... ) ~
m = - ~, - ~+ l,...,+ ~,
j = 1,...~ .

So all for fIXed {,j span an irreducible representation of type D and dis the multiplicity of
One has

(25) 

Let

(26) E,m = S2x = l)x, S3x = mx) .
Then

(27) dt= dim Et, m

and St maps E~, m into Et, The algebra generated by the Si in is in the basis the

algebra A of all matrices A with

(28) 03C8,m,j’~ = 03C3 03B4jj’(A)m,m’

where At is a (2 l~+ 1)-dimensional matrix. We may write

(29) A = ~ At0 
tE A

We take now V = (C2)®N and S. = ~N~ . We choose in CZ the basis

(30) ~).(~).~).~)
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and in (C2)®N the basis

(3~) ~P(~1 , . , ~Q ® ...® 
with ~i = ±1/2. Then

(32) S3~P(~1 , . , SN) = (£1 + ... + EN) ... , EN) . .

So m can only take the values

(33) m = 0, , ± 1, ± 2,..., ± N/2 (N even)
m = ± 1/2 , ± 3/2 ... , , ± N/2 (N odd)

and hence { can only take the values

(34) ~ = 0,1,..., N/2 ( N even)
~ = 1/2, 3/2, ..., N/2 (N odd) . .

Let

(35) Fm = , S3X = mj . .
Then

(36) dim Fm = (N N 2-m)
.

As

(37) Fm = ® ... ® EN/2,m

and as d = dim = d is independent of m one obtains(N N 2-m) 

= dm + dm+1 +...+ dN/2

and finallyand finally

(38) d = (N N 2--( N N 2--1) 
= 2+1 N 2++1 (N N 2-).

By (4) and (31 ) we obtain

(39) ~p(~1,...,EN~

with m = ei + ... + eN. So p~N is diagonal in the basis j and we obtain for 
given in the form (29) 

~ 

(40) 
Pf,m 

f,m
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with

_N _m N_+m

(41) = p 1 2 p 2 2 d .

Hence by (38)

( 42 ) p,-l+k = 
2 +1 N 2+1 (03C12 03C11)k 

(N N 2-) 03C1N 2+ 1 03C1N 2-2 .

2
The approximation of the binomial distribution via Stirling’s formula gives

(43) pt,-t+k ~ -~- ~ 1 

N 2++1 P1 

203C0N(1 4-2 N2)
where ~N is

(44) ~N = (1 2-N) 1- z + (1 2+N) .

This shows at first that for large N all which are not near Nz can be neglected and that for those 
which are near Nz

(45) P-+k ~ (1- ) 1’2 (03C12 03C11)k 1 2x NQ2 
exp - 

(-Nz2 eNQ2

with Q2 given by (12).

We imbed A into the algebra MN~ C^, where C^ is the algebra of complex functions on n
with pointwise multiplication (recall that ~ was the set of possible ~) and where ~ is the algebra all

NxN-matrices, where all entries except finitely many ones vanish. If is given by the form (27)
then

(46) j: A -+ ~ el

where

- ~A~)-t+k,-1+k~ _ 
for 0_k,k _2~ for 0k,k’2~

(47 (A 
0 else.

and where e~ is the ~- the vector in the standard basis. Then by (40) and (42)

(48) = ~J~A)) = lr 
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and by (45)

(49) q(N)=~. ~ " ~p~p~’ , 2 Pi ~-f
for f~ Nz . So 

(50) = 0 VQ2

with

(51) ..

’ 

Put

j(03C3(N)i - N03C9(03C3i) N) = T()i~ .
Then

(T()3)kk’ = 03B4kk’ --k+Nz N ~ 03B4kk’Nz- N
as k « N. Hence for ~ Nz:

(52) 

with

X3() = Nz -  N .
One has

= s. = ~. ~ + i ~~2014~

(T()-)k’,k = 03B4k’,k-12k+k-k2 N ~ 03B4k’,k-1 2zk .

So finally

(53) 

/JMB
(54) °

Equations (50) to (54) show, how the postulated limit behaviour may arise.
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