SÉminaire de probabilités (Strasbourg)

Wilhelm von WALDEnFELS
 The Markov process of total spins

Séminaire de probabilités (Strasbourg), tome 24 (1990), p. 357-361
http://www.numdam.org/item?id=SPS_1990__24__357_0
© Springer-Verlag, Berlin Heidelberg New York, 1990, tous droits réservés.
L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

The Markov Process of Total Spins

Wilhelm von Waldenfels

Institut für Angewandte Mathematik
Universität Heidelberg
Im Neuenheimer Feld 294
D-6900 Heidelberg
Federal Republic of Germany

We consider the quantum stochastic process of independent addition of spins. Meyer observed [3], that the total spins form a commuting system of operators and may be interpreted as a classical stochastic process. The law of this process has been calculated by Biane [1] in two special cases. We want to calculate it in general. One obtains a Markov chain homogenous in time.
Our notation is that of [4] and differs a bit from [1]. The spin matrices are

$$
\sigma_{1}=\frac{1}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\frac{1}{2}\left(\begin{array}{cc}
0 & \mathrm{i} \\
-\mathrm{i} & 0
\end{array}\right), \quad \sigma_{3}=\frac{1}{2}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) .
$$

A state ω on the algebra M_{2} of complex 2×2-matrices is given by a density matrix ρ which without loss of generality we assume to be given in the form

$$
\rho=\left(\begin{array}{cc}
\rho_{1} & 0 \\
0 & \rho_{2}
\end{array}\right)=\left(\begin{array}{cc}
1 / 2+z & 0 \\
0 & 1 / 2-z
\end{array}\right), 0 \leq z \leq 1 / 2 .
$$

If $A \in \mathrm{M}_{2}$, then

$$
\omega(\mathrm{A})=\operatorname{Tr} \rho \mathrm{A} .
$$

Consider $\left(C^{2}\right)^{\otimes N}$ and $\left(\mathrm{M}_{2}\right)^{\otimes \mathrm{N}}$ and on this algebra the state $\omega^{\otimes N}$ given by the density matrix $\rho^{\otimes N}$. We define for $1 \leq \mathrm{n} \leq \mathrm{N}$

$$
\sigma_{i, n}=1 \otimes \ldots \otimes 1 \otimes \sigma_{i} \otimes \ldots \otimes 1,
$$

where the σ_{i} stands on the n -th place. Define

$$
\sigma_{i}^{(n)}=\sigma_{i, 1}+\ldots+\sigma_{i, n}
$$

and

$$
\sigma^{(n) 2}=\left(\sigma_{1}^{(n)}\right)^{2}+\left(\sigma_{2}^{(n)}\right)^{2}+\left(\sigma_{3}^{(n)}\right)^{2} .
$$

By a remark of Meyer [3] the $\sigma^{(n) 2}$ commute for $1 \leq n \leq N$. Hence together with $\omega^{\otimes N}$ one can define a corresponding classical stochastic process. This process was calculated by Biane [1] for $z=0$, or $\rho_{1}=\rho_{2}$ (symmetric case) and for $z=1 / 2$ or $\rho_{1}=1, \rho_{2}=0$ (empty state). In the symmetric case Biane obtained the random walk on dual hypergroup of $\operatorname{SU}(2)$ considered previously by Eymard and Roynette [2]. This is no accidental coincidence, because the random walk on the dual hypergroup of a compact group is a special case of a non-commutative random walk on the group. These topics shall be discussed in a forthcoming paper.
We observe that the $\sigma_{i}^{(n)}$ have the same commutation relations as the σ_{i} :

$$
\left[\sigma_{i}, \sigma_{j}\right]=\mathrm{i} \sigma_{3}
$$

(and cyclic permutations), so they form a representation of the Lie algebra $\operatorname{su}(2)$ and of the group $S U(2)$ of unitary 2×2 - matrices with determinant 1 .
Let V be a finite dimensional unitary vector space and let $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$ be hermitian operators on V with the same commutation relations as the σ_{i}. If V is irreducible, then it induces an irreducible representation \mathcal{D}^{f} of $\operatorname{su}(2)$ or $\mathrm{SU}(2)$, where

$$
\lceil\in \Lambda=\{0,1 / 2,1,3 / 2,2, \ldots\}
$$

The dimension of V is $2 \ell+1$. There exists a basis $\psi_{\mathrm{m}}, \mathrm{m}=\ell-\ell+1, \ldots, \ell$ such that

$$
S_{3} \psi_{\mathrm{m}}=\mathrm{m} \psi_{\mathrm{m}}
$$

The operator $S^{2}=S_{1}^{2}+S_{2}^{2}+S_{3}^{2}$ has the property

$$
S^{2} \psi=\lceil(\zeta+1) \psi
$$

for all $\psi \in V$.
If V is not irreducible it can be split into the orthogonal sum of irreducible vector spaces with representations $\mathcal{D}^{\mathfrak{h}}$ and $\mathcal{D}^{\mathfrak{h}}$. Then $\mathrm{V}_{1} \otimes \mathrm{~V}_{2}$ splits into the orthogonal sum

$$
\mathrm{V}_{1} \otimes \mathrm{~V}_{2}=\bigoplus_{l} \mathrm{w}_{\iota}
$$

where $\mathcal{C}=\left|l_{1}-\mathscr{C}_{2}\right|,\left|l_{1}-\mathscr{C}_{2}\right|+1, \ldots, \mathscr{l}_{1}+\mathscr{C}_{2}$. The spaces W_{f} induce the representation \mathcal{D}^{f} and are determined by V_{1} and V_{2} and \mathfrak{l} in a unique way.

The vector space \mathbf{C}^{2} with $\sigma_{1}, \sigma_{2}, \sigma_{3}$ induces the irreducible representation $\mathcal{D}^{1 / 2}$. We want to split $\left(C^{2}\right)^{\otimes N}$ into irreducible subspaces. An admissible path of length n is a sequence

$$
\Gamma=\left(\wp_{0}, \ldots, \wp_{n}\right)
$$

with $\mathcal{C}_{1} \in \Lambda=\{0,1 / 2,1, \ldots\}$, with $\mathcal{C}_{0}=0$ and $\mathcal{C}_{n}-\mathcal{C}_{n-1}= \pm 1 / 2$ for $k=1, \ldots, n$. In Fig. 1 the admissible paths are drawn and in the points of the diagram the numbers of admissible paths leading to this point are indicated.

Proposition 1. Let $\Gamma=\left(\kappa_{0}, \ldots, \zeta_{n}\right)$ be an admissible path. Then there exists exactly one irreducible subspace V_{Γ} of $\left(C^{2}\right)^{\otimes N}$. The subspace V_{Γ} induces the representation \mathcal{D}^{f}. One has

$$
\left(\mathbf{C}^{2}\right)^{\otimes \mathrm{N}}=\bigoplus \mathrm{V}_{\Gamma},
$$

Γ
where V_{Γ} runs over all admissible paths of lengths n. The space V_{Γ} consists of the vectors ψ obeying the equation

$$
\sigma^{(n) 2} \psi=\mathcal{l}_{\mathrm{n}}\left(\mathcal{C}_{\mathrm{n}}+1\right) \psi
$$

for $1 \leq k \leq n$.

Proof. The proposition is clear for $n=1$. We prove it by induction from $n-1$ to n. One has

$$
\left(\mathbf{C}^{2}\right)^{\otimes(n-1)}=\underset{\Gamma^{\prime}}{\bigoplus} V_{\Gamma}
$$

where the orthogonal sum runs over all admissible paths $\Gamma^{\prime}=\left(\wp_{0}, \ldots, \wp_{n-1}\right)$ of length $\mathrm{n}-1$. Then

$$
\left(\mathbf{C}^{2}\right)^{\otimes \mathrm{n}}=\underset{\Gamma^{\prime}}{\oplus}\left(\mathrm{V}_{\Gamma} \otimes \mathbf{C}^{2}\right)
$$

If ${C_{n-1}}=0$ then V_{Γ} belongs to \mathcal{D}^{0} and $V_{\Gamma} \otimes C^{2}$ is irreducible of type $\mathcal{D}^{1 / 2}$. If $C_{n-1}>0$, then $V_{\Gamma} \otimes C^{2}$ splits into two irreducible subspaces of types $\mathcal{D}^{h_{n-1} \pm 1 / 2}$. Denote them by V_{Γ} with $\Gamma=\left(f_{0}, \ldots, f_{n-1}, f_{n-1} \pm 1 / 2\right)$.

Figure 1.

Proposition 2. Let $\mathrm{V} \subset\left(\mathrm{C}^{2}\right)^{\otimes \mathrm{n}}$ be an irreducible representation of type \mathscr{D} and let \mathcal{P}_{V} be the orthogonal projection on V . Then

$$
\omega^{\otimes \mathrm{N}}\left(P_{\mathrm{V}}\right)=\mathrm{w}_{\mathrm{n}, l}=\begin{gathered}
(2 \zeta+1) 2^{-\mathrm{n}} \text { for } \rho_{1}=\rho_{2}=1 / 2 \\
\left(\rho_{1} \rho_{2}\right)^{\mathrm{n} / 2}-\frac{\rho_{1}^{2 l+1}-\rho_{2}^{2 l+1}}{\rho_{2}-\rho_{1}} \text { for } \rho_{1} \neq \rho_{2}
\end{gathered}
$$

Proof. We choose in V a basis $\psi_{\mathrm{m}}, \mathrm{m}=-\zeta_{\ldots} \ldots,+\zeta_{\text {, such that }}$

$$
\sigma_{3}^{(n)} \psi_{\mathrm{m}}=m \psi_{\mathrm{m}}
$$

We choose in \mathbf{C}^{2} the basis

$$
\varphi\left(-\frac{1}{2}\right)=\binom{1}{0}, \varphi\left(+\frac{1}{2}\right)=\binom{0}{1}
$$

and in $\left(\mathbf{C}^{2}\right)^{\otimes n}$ the basis

$$
\varphi\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)=\varphi\left(\varepsilon_{1}\right) \otimes \ldots \otimes \varphi\left(\varepsilon_{n}\right)
$$

with $\varepsilon_{i}= \pm \frac{1}{2}$. Then

$$
\sigma_{3}^{(\mathrm{n})} \varphi\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)=\left(\varepsilon_{1}+\ldots+\varepsilon_{n}\right) \varphi\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)=\operatorname{m} \varphi\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)
$$

and

$$
\rho^{\otimes n} \varphi\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)=\rho_{1}^{\frac{n}{2}-m} \rho_{2}^{\frac{n}{2}+m} \varphi\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)
$$

As ψ_{m} is a linear combination of $\varphi\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ with $\varepsilon_{1}+\ldots+\varepsilon_{n}=m$ one has

$$
\rho^{\otimes n} \psi_{m}=\rho_{1}^{\frac{n}{2}-m} \rho_{2}^{\frac{n}{2}+m} \psi_{m}
$$

and

$$
w_{n, l}=\sum_{m=-l}^{l} \rho_{1}^{\frac{n}{2}-m} \rho_{2}^{\frac{n}{2}+m}
$$

Proposition 3. The number of admissible paths of length n ending in \mathfrak{l} is

For the proof see [4], eq.(38).

$$
\mathrm{d}_{\mathrm{n}, l}=\binom{\mathrm{n}}{\mathrm{n} / 2-l} \cdot\binom{\mathrm{n}}{\mathrm{n} / 2-l-1} .
$$

We define on $\Lambda^{N}, \Lambda=\{0,1 / 2,1, \ldots\}$ a probability measure by putting

Define a stochastic process $\mathrm{L}_{0}, \mathrm{~L}_{1}, \ldots, \mathrm{~L}_{\mathrm{N}}$ on Λ^{N} by

$$
\begin{gathered}
\mathrm{L}_{0}=0 \\
\mathrm{~L}_{\mathrm{n}}\left(\mathcal{C}_{1}, \ldots,,_{\mathrm{N}}\right)=\mathcal{C}_{\mathrm{n}} .
\end{gathered}
$$

Proposition 4. One has

$$
\mathrm{P}\left\{\mathrm{~L}_{\mathrm{n}}=\eta=\mathrm{d}_{\mathrm{n},} \mathrm{~W}_{\mathrm{n}, l}\right.
$$

and

$$
P\left\{L_{1}=f_{1}, \ldots, L_{n}=\zeta_{n}\right\}=\begin{aligned}
& w_{n, 6} \text { if }\left(\mathcal{L}_{0}, \ldots, \zeta_{n}\right) \text { is admissible } \\
& 0 \text { if }\left(f_{0}, \ldots, \zeta_{n}\right) \text { is not admissible }
\end{aligned} .
$$

Proof. If S is the set of admissible paths of length N starting with $\Gamma_{0}=\left(\Gamma_{0}, \ldots, \rho_{n}\right)$, then

$$
P\left(L_{1}=f_{1}, \ldots, L_{n}=\zeta_{n}\right\}=\sum_{\Gamma \in S} P(\Gamma)=\sum_{\Gamma \in S} \omega^{\otimes N}\left(P_{V_{r}}\right)=\omega^{\otimes N}\left(P_{V_{r_{0}}} \otimes\left(C^{2}\right)^{N-n}\right)=\omega^{\otimes n}\left(P_{V_{r_{0}}}\right)=w_{n, \zeta_{a}}
$$

This gives the second assertion of the proposition. The first one is immediate
Proposition 5. The process $L_{n}, n=0,1,2, \ldots$ is a homogeneous Markov chain with transition probability

$$
\begin{gathered}
\frac{2 \zeta+1}{2(2 \zeta+1)} \text { for } \rho_{1}=\rho_{2} \\
\left(\rho_{1} \rho_{2}\right)^{c-l} \frac{\rho_{1}^{2 l+1}-\rho_{2}^{2 l+1}}{\rho_{1}^{2 l+1}-\rho_{2}^{2 l+1}} \text { for } \rho_{1} \neq \rho_{2} \text { if } l-\zeta= \pm \frac{1}{2} \text { and } 0 \text { otherwise. }
\end{gathered}
$$

Proof. We calculate

$$
P\left\{L_{n}=\zeta_{n} \mid L_{n-1}=\zeta_{n-1}, \ldots, L_{1}=G_{1}\right\}=\frac{P\left\{L_{n}=C_{n}, \ldots, L_{1}=\mathcal{C}_{1}\right\}}{P\left\{L_{n-1}=\zeta_{n-1}, \ldots, L_{1}=\mathcal{l}_{1}\right\}}=\frac{w_{n, \zeta_{0}}}{w_{n, 6-1}} .
$$

On the other hand

$$
P\left\{L_{n}=\zeta_{n}, L_{n-1}=\zeta_{n-1}\right\}=d_{n-1, h_{-1}} w_{n, h_{n}},
$$

as the number of admissible paths of length n ending with ζ_{n-1}, ς_{n} is equal to the number of admissible paths of length $n-1$ ending in $\zeta_{n-1} S_{0}$ by proposition 4

$$
P\left\{L_{n}=G_{n} \mid L_{n-1}=G_{n-1}\right\}=\frac{w_{n, h_{6}}}{w_{n-1, h_{1}-1}} .
$$

Literature

[1] P. BIANE, Marches de Bernoulli quantiques, LNM, This volume
[2] P. EYMARD, B. ROYNETTE, Marches aléatoires sur le dual de SU(2). In : Analyse harmonique sur les groupes de Lie, LNM 497, Springer, Berlin, Heidelberg, New York 1975. Pages: 108-152.
[3] P. A. MEYER
[4] W. v. WALDENFELS, Illustration of the Quantum Central Limit theorem by independent addition of spins, LNM, This volume.

