WILHELM VON WALDENFELS The Markov process of total spins

Séminaire de probabilités (Strasbourg), tome 24 (1990), p. 357-361 <http://www.numdam.org/item?id=SPS 1990 24 357 0>

© Springer-Verlag, Berlin Heidelberg New York, 1990, tous droits réservés.

L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

The Markov Process of Total Spins

Wilhelm von Waldenfels

Institut für Angewandte Mathematik Universität Heidelberg Im Neuenheimer Feld 294 D-6900 Heidelberg Federal Republic of Germany

We consider the quantum stochastic process of independent addition of spins. Meyer observed [3], that the total spins form a commuting system of operators and may be interpreted as a classical stochastic process. The law of this process has been calculated by Biane [1] in two special cases. We want to calculate it in general. One obtains a Markov chain homogenous in time.

Our notation is that of [4] and differs a bit from [1]. The spin matrices are

$$\sigma_1 = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \frac{1}{2} \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}, \quad \sigma_3 = \frac{1}{2} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$

A state ω on the algebra M_2 of complex 2×2 - matrices is given by a density matrix ρ which without loss of generality we assume to be given in the form

$$\rho = \begin{pmatrix} \rho_1 & 0 \\ 0 & \rho_2 \end{pmatrix} = \begin{pmatrix} 1/2 + z & 0 \\ 0 & 1/2 - z \end{pmatrix}, \ 0 \le z \le 1/2.$$

If $A \in M_2$, then

$$\omega(A) = \operatorname{Tr} \rho A$$
.

Consider $(\mathbb{C}^2)^{\otimes N}$ and $(\mathbb{M}_2)^{\otimes N}$ and on this algebra the state $\omega^{\otimes N}$ given by the density matrix $\rho^{\otimes N}$. We define for $1 \le n \le N$

$$\sigma_{i,n} = 1 \otimes ... \otimes 1 \otimes \sigma_i \otimes ... \otimes 1,$$

where the σ_i stands on the n-th place. Define

$$\sigma_i^{(n)} = \sigma_{i,1} + \dots + \sigma_{i,n}$$

and

$$\sigma^{(n)2} = (\sigma_1^{(n)})^2 + (\sigma_2^{(n)})^2 + (\sigma_3^{(n)})^2.$$

By a remark of Meyer [3] the $\sigma^{(n)2}$ commute for $1 \le n \le N$. Hence together with $\omega^{\otimes N}$ one can define a corresponding classical stochastic process. This process was calculated by Biane [1] for z = 0, or $\rho_1 = \rho_2$ (symmetric case) and for z = 1/2 or $\rho_1 = 1$, $\rho_2 = 0$ (empty state). In the symmetric case Biane obtained the random walk on dual hypergroup of SU(2) considered previously by Eymard and Roynette [2]. This is no accidental coincidence, because the random walk on the dual hypergroup of a compact group is a special case of a non-commutative random walk on the group. These topics shall be discussed in a forthcoming paper.

We observe that the $\sigma_i^{(n)}$ have the same commutation relations as the σ_i :

(and cyclic permutations), so they form a representation of the Lie algebra su(2) and of the group SU(2) of unitary 2×2 - matrices with determinant 1.

Let V be a finite dimensional unitary vector space and let S_1, S_2, S_3 be hermitian operators on V with the same commutation relations as the σ_i . If V is irreducible, then it induces an irreducible representation \mathcal{D}^f of su(2) or SU(2), where

$$l \in \Lambda = \{0, 1/2, 1, 3/2, 2, ...\}$$

The dimension of V is $2\ell + 1$. There exists a basis ψ_m , $m = \zeta - \ell + 1,..., \ell$ such that

$$S_3 \psi_m = m \psi_m$$
.

The operator $S^2 = S_1^2 + S_2^2 + S_3^2$ has the property

$$S^2 \Psi = \ell(\ell + 1) \Psi,$$

for all $\psi \in V$.

If V is not irreducible it can be split into the orthogonal sum of irreducible vector spaces with representations \mathcal{D}^{f_1} and \mathcal{D}^{f_2} . Then V₁ \otimes V₂ splits into the orthogonal sum

$$V_1 \otimes V_2 = \bigoplus_{\ell} W_{\ell}$$
,

where $l = |l_1 \cdot l_2|$, $|l_1 \cdot l_2| + 1$, ..., $l_1 + l_2$. The spaces W_l induce the representation \mathcal{D}^l and are determined by V_1 and V_2 and l in a unique way.

The vector space \mathbb{C}^2 with $\sigma_1, \sigma_2, \sigma_3$ induces the irreducible representation $\mathcal{D}^{1/2}$. We want to split $(\mathbb{C}^2)^{\otimes N}$ into irreducible subspaces. An *admissible path* of length n is a sequence

$$\Gamma = (\ell_0, \dots, \ell_n),$$

with $l_i \in \Lambda = \{0, 1/2, 1, ...\}$, with $l_0 = 0$ and $l_n - l_{n-1} = \pm 1/2$ for k = 1, ..., n. In Fig. 1 the admissible paths are drawn and in the points of the diagram the numbers of admissible paths leading to this point are indicated.

Proposition 1. Let $\Gamma = (t_0, ..., t_n)$ be an admissible path. Then there exists exactly one irreducible subspace V_{Γ} of $(\mathbb{C}^2)^{\otimes N}$. The subspace V_{Γ} induces the representation \mathcal{D}^{f_n} . One has

$$(\mathbf{C}^2)^{\otimes \mathbf{N}} = \bigoplus_{\Gamma} \mathbf{V}_{\Gamma}$$

where V_{Γ} runs over all admissible paths of lengths n. The space V_{Γ} consists of the vectors ψ obeying the equation

$$\sigma^{(n)2}\psi = l_n(l_n+1)\psi,$$

for $1 \le k \le n$.

Proof. The proposition is clear for
$$n = 1$$
. We prove it by induction from $n - 1$ to n. One has

$$(\mathbf{C}^2)^{\otimes (n-1)} = \bigoplus_{\Gamma} \mathbf{V}_{\Gamma}$$

where the orthogonal sum runs over all admissible paths $\Gamma' = (l_0, ..., l_{n-1})$ of length n-1. Then

$$(\mathbb{C}^2)^{\otimes n} = \bigoplus_{\Gamma'} (\mathbb{V}_{\Gamma} \otimes \mathbb{C}^2).$$

If $l_{n-1} = 0$ then V_{Γ} belongs to \mathcal{D}^0 and $V_{\Gamma} \otimes \mathbb{C}^2$ is irreducible of type $\mathcal{D}^{1/2}$. If $l_{n-1} > 0$, then $V_{\Gamma} \otimes \mathbb{C}^2$ splits into two irreducible subspaces of types $\mathcal{D}^{l_{n-1} \pm 1/2}$. Denote them by V_{Γ} with $\Gamma = (l_0, ..., l_{n-1}, l_{n-1} \pm 1/2)$.

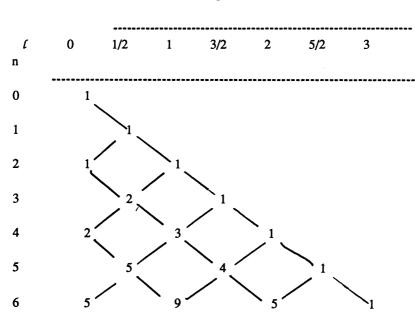


Figure 1.

Proposition 2. Let $V \subset (\mathbb{C}^2)^{\otimes n}$ be an irreducible representation of type \mathcal{D}^f and let \mathcal{P}_V be the orthogonal projection on V. Then

$$\omega^{\otimes N}(\mathcal{P}_{V}) = w_{n,\ell} = (\rho_{1}\rho_{2})^{n/2} \cdot \frac{\rho_{1}^{2\ell+1} - \rho_{2}^{2\ell+1}}{\rho_{2} - \rho_{1}} \text{ for } \rho_{1} \neq \rho_{2}$$

Proof. We choose in V a basis Ψ_m , $m = -\ell$, ..., $+\ell$, such that $\sigma_3^{(n)}\Psi_m = m\Psi_m$.

We choose in \mathbb{C}^2 the basis

$$\varphi(-\frac{1}{2}) = \begin{pmatrix} 1\\0 \end{pmatrix}, \quad \varphi(+\frac{1}{2}) = \begin{pmatrix} 0\\1 \end{pmatrix}$$

and in $(\mathbb{C}^2)^{\otimes n}$ the basis

$$\varphi(\varepsilon_1,...,\varepsilon_n) = \varphi(\varepsilon_1) \otimes ... \otimes \varphi(\varepsilon_n)$$

with $\varepsilon_i = \pm \frac{1}{2}$. Then $\sigma_3^{(n)} \varphi(\varepsilon_1,...,\varepsilon_n) = (\varepsilon_1 + ... + \varepsilon_n) \varphi(\varepsilon_1,...,\varepsilon_n) = m \varphi(\varepsilon_1,...,\varepsilon_n)$ and

$$\rho^{\otimes n}\phi(\epsilon_1,...,\epsilon_n)=\rho_1^{\underline{n}}\cdot m \rho_2^{\underline{n}}\cdot m \rho_2^{\underline{n}}+m \phi(\epsilon_1,...,\epsilon_n).$$

As ψ_m is a linear combination of $\varphi(\varepsilon_1,...,\varepsilon_n)$ with $\varepsilon_1 + ... + \varepsilon_n = m$ one has

$$\rho^{\otimes n}\psi_m = \rho_1^2 \quad \rho_2^2 \quad \psi_n$$

and

$$w_{n,\ell} = \sum_{m=-\ell}^{\ell} \rho_1^{n-m} \rho_2^{n+m}$$

Proposition 3. The number of admissible paths of length n ending in l is $d_n \ell = \begin{pmatrix} n \\ -n \end{pmatrix} - \begin{pmatrix} n \\ -n \end{pmatrix}$.

$$d_{n,\ell} = \begin{pmatrix} n \\ n/2 - \ell \end{pmatrix} - \begin{pmatrix} n \\ n/2 - \ell - 1 \end{pmatrix}$$

For the proof see [4], eq.(38).

We define on Λ^N , $\Lambda = \{0, 1/2, 1, ...\}$ a probability measure by putting $P\{(\ell_0, ..., \ell_N)\} = \begin{array}{c} w_{N, \ell_N} & \text{if } (\ell_0, ..., \ell_n) & \text{is admissible} \\ 0 & \text{if } (\ell_0, ..., \ell_n) & \text{is not admissible} \end{array}$

Define a stochastic process $L_0, L_1, ..., L_N$ on Λ^N by

$$L_0 = 0$$
$$L_n(\ell_1, \dots, \ell_N) = \ell_n$$

Proposition 4. One has

$$P\{L_n = l\} = d_{n,l} w_{n,l}$$

and

 $P\{L_1 = l_1, \dots, L_n = l_n\} = \begin{cases} w_{n,l_n} & \text{if } (l_0, \dots, l_n) & \text{is admissible} \\ 0 & \text{if } (l_0, \dots, l_n) & \text{is not admissible} \end{cases}$

Proof. If S is the set of admissible paths of length N starting with $\Gamma_0 = (l_0, ..., l_n)$, then $P\{L_1 = l_1, ..., L_n = l_n\} = \sum_{\Gamma \in S} P(\Gamma) = \sum_{\Gamma \in S} \omega^{\otimes N}(P_{V_{\Gamma}}) = \omega^{\otimes N}(P_{V_{\Gamma_0}} \otimes (\mathbb{C}^2)^{N-n}) = \omega^{\otimes n}(P_{V_{\Gamma_0}}) = w_{n, l_n}.$

This gives the second assertion of the proposition. The first one is immediate

Proposition 5. The process L_n , n = 0,1,2,... is a homogeneous Markov chain with transition probability

$$P\{L_{n} = \ell | L_{n-1} = \ell\} = \frac{\frac{2\ell+1}{2(2\ell+1)} \text{ for } \rho_{1} = \rho_{2}}{(\rho_{1}\rho_{2})^{\ell} \cdot \ell \frac{\rho_{1}^{2\ell+1} - \rho_{2}^{2\ell+1}}{\rho_{1}^{2\ell+1} - \rho_{2}^{2\ell+1}} \text{ for } \rho_{1} \neq \rho_{2} \text{ if } \ell - \ell = \pm \frac{1}{2} \text{ and } 0 \text{ otherwise.}}$$

Proof. We calculate

$$P\{L_n = l_n \mid L_{n-1} = l_{n-1}, \dots, L_1 = l_1\} = \frac{P\{L_n = l_n, \dots, L_1 = l_1\}}{P\{L_{n-1} = l_{n-1}, \dots, L_1 = l_1\}} = \frac{W_{n, l_n}}{W_{n, l_{n-1}}}$$

On the other hand

$$P\{L_n = l_n, L_{n-1} = l_{n-1}\} = d_{n-1, l_{n-1}} W_{n, l_n}$$

as the number of admissible paths of length n ending with l_{n-1} , l_n is equal to the number of admissible paths of length n - 1 ending in $l_{n-1} S_0$ by proposition 4

$$P\{L_n = f_n \mid L_{n-1} = f_{n-1}\} = \frac{w_{n,f_n}}{w_{n-1,f_{n-1}}}.$$

Literature

- [1] P. BIANE, Marches de Bernoulli quantiques, LNM, This volume
- [2] P. EYMARD, B. ROYNETTE, Marches aléatoires sur le dual de SU(2). In : Analyse harmonique sur les groupes de Lie, LNM 497, Springer, Berlin, Heidelberg, New York 1975. Pages : 108-152.
- [3] P. A. MEYER
- [4] W. v. WALDENFELS, Illustration of the Quantum Central Limit theorem by independent addition of spins, LNM, This volume.