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PREDICTABLE SETS AND SET-VALUED PROCESSES
by T.J.Ransford

Introduction.

Throughout this article, we suppose that we are given a complete probability space
(Q,Z, P), together with a filtration (Fo, {F:}o<t<oco) satisfying the usual conditions of
right continuity, completeness, and left continuity at co. Denote by P the predictable
o-field, namely the o-field on [0, 00] x Q generated by all sets of the form

{0} xA (A€ Fo-) and (t,00]xB (B € Fy,t>0)

together with the evanescent sets (which are always to be treated as negligible). Our
purpose is to establish analogues of the classical ‘analytic implies measurable’ and
projection theorems for P, even though P is not complete relative to any probability
measure. The last section explores some connections with set-valued processes.

We follow the notation of [3] throughout, except for the minor change that out time
interval is [0, co] rather than [0, 00) (however, see [3, IV.61(b)]). Finally, we remark
that, with obvious modifications to the proofs, all the results below remain valid if P
is replaced throughout by O, the optional o-field.

1. A Measurability Theorem.

Given a measurable space (E,£), denote by A(€) the class of £-analytic sets
(see [3, IIL7]). Then £ C A(£), with equality if (E,£) is complete relative to some
probability measure ([3, II1.33(a)]), though not however in general. In particular, it is
never true that A(P) = P: for if Z is any analytic subset of [0, co] which is not Borel,
then Z x Q € A(P) \ P. Instead, writing B for the Borel sets, we have the following
theorem.

Theorem 1. Let H C [0,0] x Q. Then H € P if and only if H € A(P) and
H € B[0,00] ® Foo.

Proof. The ‘only if’ is clear. For the ‘if’, suppose that H € A(P)N(B[0, 0] ® Foo ).
Then the set H N ({oo} x ) belongs to {00} x Fuo, and hence to P, so subtracting it
off we may assume that H C [0,00) x Q. Let X = P(1y), the predictable projection
of 1y (see [3, VI.43]). As P(.) is order-preserving we certainly have 0 < X < 1, and
proving that H € P is equivalent to showing that X = 1y, which we now proceed to
do.

First we show that X > 1y. Suppose, if possible, that this is false. Then there
exists § > 0 such that H N {X < 1— 6} is not evanescent. As this set belongs to A(P),
the (proof of) the predictable section theorem ([3, IV.85]) shows that there exists a
predictable time T', with P(T < 0o) > 0, such that

[T] ¢ (HN{X <1-6})U[cx].



42

By the defining property of predictable projections we have
Ef1 H(T)I(T<°°) |Fr-]= X(T)I(T<°°) a.s.
Therefore
P(T < o0) = E[IH(T)I(T<°°)] = E[X-(T)I(T<°°)] <(1-6).P(T < o0),
which gives the desired contradiction.
Now we show that X < 1y. Again, suppose, if possible, that this is false. Then
there exists § > 0 such that {X > 6} \ H is not evanescent. As this set belongs to

B[0,0) ® Feo, the (ordinary) section theorem ([3, II1.44]) shows that there exists a
random time T, with P(T < oo0) > 0, such that

I71 ¢ (X268 \H)U[oo]
Define a measure x on P by
#Q) = E(1g(T)(7<o0)] (QeP),
and then a P-outer measure p* on [0,00) x by
o #*(R) =inf{n(Q): Q € P,Q D R} (R C[0,00) x Q).

A standard argument shows that u* is a P-capacity (see [3, II1.32]). As H € A(P), it
follows by Choquet’s theorem ([3, III.28]) that

2 u*(H) =sup{p(Q): Q € P,Q C H}.
Now on the one hand, if Q € P and @ D H, then 1o =?(1g) 2 ?(1x) = X, so
#Q) 2 E[X(T)(1<o0)] 2 6.P(T < ),

and hence by (1),
p*(H) 2 6.P(T < ) > 0.

On the other hand, if Q € P and Q C H, then 1¢ < 1y, so
#(Q) £ E[1a(T) (1<) =0,

and hence by (2),
w(H)=0.

This gives the desired contradiction, and completes the proof. [

Remark. The proof of Theorem 1 was influenced by [2] and by [3, IV.76(c)].
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2. A Projection Theorem.

To exploit Theorem 1 we use a little topology. Throughout this section, let C
be a compact metrizable space. Denote by P(C) the collection of all subsets J of
C x [0,00] x Q such that

(i) J belongs to B(C) ® P, and
(ii) J, is compact almost surely, where

Jo={(z,t) € C x [0,00] : (z,t,w) € T} (we Q)

The class P(C) is stable under finite unions and countable intersections.

Theorem 2. Let J € P(C). If v : C x [0,00] x 2 — [0,00] x Q denotes the
canonical projection map, then w(J) € P.

Proof. As J € B(C)®P, it follows by [3, II1.13] that n(J) € A(P). We claim that
also m(J) € B[0, 00]® Foo. If s0, then applying Theorem 1 yields the desired conclusion
that m(J) € P.

To prove the claim, put H = x(J). Given B € B[0, 0], set

Qp =='((B x Q)N H),
where 7' : [0,00] x @ — Q is the canonical projection. Then
Qp=7'n((C x BxQ)nJ),

so since (C' x B x Q)N J € B(C x [0,00]) ® Foo, it follows by [3, II1.13] again that
B € A(Foo). As Foo is P-complete, we therefore have Q5 € Foo. In particular, taking
By n = [k/n,(k + 1)/n], we deduce that each of the sets

He = |J(Binx28,.)U ({00} X Qo)) (n21)
k>0
belongs to B[0,00] ® Feo. Also, since almost every w-section of J is compact, the same
is true of H, and this easily implies that (,, H» = H. Hence H € B[0,0] ® Foo,
justifying the claim. 0O -

We now give an application to the predictability of an uncountable supremum
of processes. Note that by this is meant the actual supremum, not just an essential
supremum in the sense of [1] for example.

Corollary. Let ¥ : C x [0,00] x 2 — [—00, 0] be & map such that
(i) ¥ is B(C) @ P-measurable, and
(i) the map (z,t) — ¥(z,t,w) is upper semicontinuous almost surely.
Then the process @ : [0,00] x @ — [—00, 0] is predictable, where

®(t,w) = :gg ¥(z,t,w) ((t,w) € [0,00] x ).

Proof. By upper semicontinuity, the supremum in the definition of ® is always
attained. Hence, given a € R, we have

{® 2o} =n({¥ 2 a}),

where 7 is as in Theorem 2. The hypotheses on ¥ guarantee that {¥ > a} € P(C), so
by Theorem 2 it follows that {® > a} € P. Thus & is predictable. [
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3. Set-Valued Processes.

One way to extend the last corollary is to allow the supremum to be taken over
a set which itself varies, namely, a set-valued stochastic process. Set-valued processes
arise in a number of contexts, and in [4] at least, such suprema play a fundamental
role.

As before, let C be a compact metrizable space, and now denote by K(C) the
collection of all compact subsets of C. A set-valued map K : [0,00] x @ — K(C) is:
(i) predictable if for every F € K(C)
{(t,w) € [0,00] X Q: K(t,w)NF # B} € P;
(ii) upper semicontinuous if, for almost all w, for every F € K(C)
{t € [0,00] : K(t,w) N F # B} € K[0, 00].

These two properties can be characterized very simply in terms of the graph of K.

Theorem 3. A map K : [0,00] x @ — K(C) is predictable and upper semicon-
tinuous if and only if I'(K) € P(C), where

I(K) = {(z,t,w) € C x [0,00] x Q: z € K(t,w)}.

Proof. First suppose that I'(K) € P(C). Then given F € K(C), we have
{t¢,w): K@t,w)NF#@} = «(T(K)N(F x[0,00] x 2)),

so by Theorem 2 it follows that K is predictable. As almost every w-section of I'(K)
is compact, it is plain that K is upper semicontinuous.

Conversely, suppose that K is predictable and upper semicontinuous. In particular
it then follows that for each F' € K(C) we have J(F) € P(C), where

J(F) = ((C\int(F))x[0,00]x8) U (Cx{(t,w): K(t,w)NF #3}).
Now as C is compact metrizable, we may choose a sequence (Fy) in K(C) with the
following property: given C' € K(C) and z € C \ C', there exists n such that z €

int(F,,) and C' N F, = @. With this sequence it is then elementary to check that
I(K) = Nn>1J(Fy). Hence I'(K) € P(C). O

Finally we can read off the result that was hinted at earlier.

Corollary. Let ¥ : C x [0,00] x @ — [—00,00] be a map satisfying the same
conditions as in the Corollary to Theorem 2. Let K : [0,00]xQ2 — K(C) be a predictable,
upper semicontinuous process. Then @ : [0,00] x Q — [—00,00] is a predictable process,
where

o(t,w)= sup ¥(z,t,w) ((t,w) € [0,00] x ).
z€K(t,w)

Proof. This time, given a € R, we have

{® > a} = n({¥ > a} NT(K)).

Using Theorem 3, ({¥ > a} NT(K)) € P(C), so as before {# >a} € Pand @ is
predictable. O
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