@article{SPS_1991__25__24_0, author = {Sch\"urmann, Michael}, title = {The {Az\'ema} martingales as components of quantum independent increment processes}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {24--30}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {25}, year = {1991}, mrnumber = {1187766}, zbl = {0745.60043}, language = {fr}, url = {http://archive.numdam.org/item/SPS_1991__25__24_0/} }
TY - JOUR AU - Schürmann, Michael TI - The Azéma martingales as components of quantum independent increment processes JO - Séminaire de probabilités de Strasbourg PY - 1991 SP - 24 EP - 30 VL - 25 PB - Springer - Lecture Notes in Mathematics UR - http://archive.numdam.org/item/SPS_1991__25__24_0/ LA - fr ID - SPS_1991__25__24_0 ER -
%0 Journal Article %A Schürmann, Michael %T The Azéma martingales as components of quantum independent increment processes %J Séminaire de probabilités de Strasbourg %D 1991 %P 24-30 %V 25 %I Springer - Lecture Notes in Mathematics %U http://archive.numdam.org/item/SPS_1991__25__24_0/ %G fr %F SPS_1991__25__24_0
Schürmann, Michael. The Azéma martingales as components of quantum independent increment processes. Séminaire de probabilités de Strasbourg, Tome 25 (1991), pp. 24-30. http://archive.numdam.org/item/SPS_1991__25__24_0/
[1] Quantum stochastic processes. Publ. RIMS, Kyoto Univ. 18, 97-133 (1982) | MR | Zbl
, , :[2] Quantum independent increment processes on superalgebras. Math. Z. 198, 451-477 (1988) | MR | Zbl
, , :[3] Sur les fermes aleatoires. In: Azema, J., Yor, M. (eds.) Sem. Prob. XIX. (Lect. Notes Math., vol. 1123). Berlin Heidelberg New York: Springer 1985 | Numdam | MR | Zbl
:[4] Bialgebren in der Quantenstochastik. Dissertation, Heidelberg 1989 | Zbl
: *-[5] The relations of the non-commutative coefficient algebra of the unitary group. SFB-Preprint Nr. 460, Heidelberg 1988
, :[6] Symmetric Hilbert spaces and related topics. (Lect. Notes Math. vol. 261). Berlin Heidelberg New York : Springer 1972 | MR | Zbl
:[7] Azema martingales and quantum stochastic calculus. Preprint 1989
:[8] Positive definite kernels, continuous tensor products, and central limit theorems of probability theory. (Lect. Notes Math. vol. 272). Berlin Heidelberg New York : Springer 1972 | MR | Zbl
, :[9] Noncommutative stochastic processes with independent and stationary increments satisfy quantum stochastic differential equations. To appear in Probab. Th. Rel. Fields | MR | Zbl
:[10] A class of representations of involutive bialgebras. To appear in Math. Proc. Cambridge Philos. Soc. | MR | Zbl
:[11] Quantum stochastic processes with independent additive increments. Preprint, Heidelberg 1989 | MR
: :