The Azéma martingales as components of quantum independent increment processes
Séminaire de probabilités de Strasbourg, Tome 25 (1991), pp. 24-30.
@article{SPS_1991__25__24_0,
     author = {Sch\"urmann, Michael},
     title = {The {Az\'ema} martingales as components of quantum independent increment processes},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {24--30},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {25},
     year = {1991},
     mrnumber = {1187766},
     zbl = {0745.60043},
     language = {fr},
     url = {http://archive.numdam.org/item/SPS_1991__25__24_0/}
}
TY  - JOUR
AU  - Schürmann, Michael
TI  - The Azéma martingales as components of quantum independent increment processes
JO  - Séminaire de probabilités de Strasbourg
PY  - 1991
SP  - 24
EP  - 30
VL  - 25
PB  - Springer - Lecture Notes in Mathematics
UR  - http://archive.numdam.org/item/SPS_1991__25__24_0/
LA  - fr
ID  - SPS_1991__25__24_0
ER  - 
%0 Journal Article
%A Schürmann, Michael
%T The Azéma martingales as components of quantum independent increment processes
%J Séminaire de probabilités de Strasbourg
%D 1991
%P 24-30
%V 25
%I Springer - Lecture Notes in Mathematics
%U http://archive.numdam.org/item/SPS_1991__25__24_0/
%G fr
%F SPS_1991__25__24_0
Schürmann, Michael. The Azéma martingales as components of quantum independent increment processes. Séminaire de probabilités de Strasbourg, Tome 25 (1991), pp. 24-30. http://archive.numdam.org/item/SPS_1991__25__24_0/

[1] Accardi, L., Frigerio, A., Lewis, J.T.: Quantum stochastic processes. Publ. RIMS, Kyoto Univ. 18, 97-133 (1982) | MR | Zbl

[2] Accardi, L., Schürmann, M., Waldenfels, W. V. : Quantum independent increment processes on superalgebras. Math. Z. 198, 451-477 (1988) | MR | Zbl

[3] Azéma, J.: Sur les fermes aleatoires. In: Azema, J., Yor, M. (eds.) Sem. Prob. XIX. (Lect. Notes Math., vol. 1123). Berlin Heidelberg New York: Springer 1985 | Numdam | MR | Zbl

[4] Glockner, P.: *-Bialgebren in der Quantenstochastik. Dissertation, Heidelberg 1989 | Zbl

[5] Glockner, P., Waldenfels, W. V. : The relations of the non-commutative coefficient algebra of the unitary group. SFB-Preprint Nr. 460, Heidelberg 1988

[6] Guichardet, A.: Symmetric Hilbert spaces and related topics. (Lect. Notes Math. vol. 261). Berlin Heidelberg New York : Springer 1972 | MR | Zbl

[7] Parthasarathy, K.R.: Azema martingales and quantum stochastic calculus. Preprint 1989

[8] Parthasarathy, K.R., Schmidt, K.: Positive definite kernels, continuous tensor products, and central limit theorems of probability theory. (Lect. Notes Math. vol. 272). Berlin Heidelberg New York : Springer 1972 | MR | Zbl

[9] Schürmann, M.: Noncommutative stochastic processes with independent and stationary increments satisfy quantum stochastic differential equations. To appear in Probab. Th. Rel. Fields | MR | Zbl

[10] Schürmann, M.: A class of representations of involutive bialgebras. To appear in Math. Proc. Cambridge Philos. Soc. | MR | Zbl

[11] Schürmann, M.: Quantum stochastic processes with independent additive increments. Preprint, Heidelberg 1989 | MR

[12] Sweedler, M.E.: Hopf algebras. New York : Benjamin 1969 | MR | Zbl