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MULTIPLICATIVE DECOMPOSITION OF NONSINGULAR MATRIX VALUED SEMIMARTINGALES

Rajeeva L.Karandikar
Indian Statistical Institute

7, S.J.S.Sansanwal Marg
New Delhi - 110016, INDIA

1. INTRODUCTION

It was shown in Karandikar (1982) that a continuous semimartingale Z with values

in the space of dxd nonsingular matrices admits a multiplicative decomposition

Z = NB

where N is a continuous local martingale and B is a continuous process of locally

bounded variation. We extend this result to general semimartingales Z. In general,

the decomposition is not unique. Conditions are given under which a decomposition

with B predictable exists, and it is shwon that under these conditions, the decompo-

sition is unique. An example is given of a bounded semimartingale Z which does not

admit a decomposition with B predictable.

We obtain a formula for inverse of a multiplicative integral and also integra-

tion by parts formula for multiplicative stochastic integration, which like in

Karandikar (1982) is the main tool of this paper. For multiplicative decomposition

of real valued semimartingales, see Ito-Watanabe (1965), Meyer (1967), Jacod (1979).

2. PRELIMINARIES

Let be a fixed complete probability space, and F = {Ft) be a filtration
satisfying usual hypothesis. All processes we consider are For an

integer d, L(d) will denote the set of all dxd matrices and Lo(d) will denote the
set of all invertible elements of L(d). For A L(d), IAl will denote the Hillbert-
Schmidt norm of A.

An L(d) valued process X = (Xij) is said to be a semimartingale if each of its

components Xij is a semimartingale. For a rcll (cadlag) process X, X denotes the

process : X (t) = X(t-) for t > 0 and X (0) = 0. Here, X(t-) denotes the left limit

at t.

For an L(d) valued locally bounded predictable process- f and an L(d) valued

semimartingale X, the stochastic integral j which we denote by f. X is defined

by

(f .X)ij = fikdXkj.
Also the integral X :f is defined by X :f = (f’.X’)’, where A’ 

I denotes transpose

of A. Clearly
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(X : f)ij =  fkjdXik.
For L(d) - valued semimartingales X,Y, let

[X,Y]ij =  [Xik’ Ykj]
and for continuous semimartingales X,Y (or L2-local martingales X,Y), let 

X,Y> =  Xik, Ykj>.
For a semimartingale X = (Xij), Xc denotes its continuous martingale part defined
componentwise by

(Xc)ij = (Xij)c.

For a process X, S(X) will denote the process

S(x) = I X(s) if L [x(s) I ~ ~
’ ’ 

0 otherwise. 
’

For a. rcll process X, the process AX is defined by

AX = X - X . .

It is well known that if X,Y are semimartingales, (real valued) then

~ l JAY(s)) I  °° a.s., (1)
s~t

and the same can be seen to hold for L(d) valued semimartingales. It follows as in

real valued case that for L(d) valued semimartingales X,Y,

[X,Y] = Xc, Yc> + S(AXAY). (2)

From now on, all processes we consider one L(d) valued. For semimartingales X,Y and

locally bounded predictable processes f,g, the following identities are easy to

verify

(f.X) : : g = f.(X : : g) (3)

[f.X,Y:g] = f. [X,Y] :g (4)

[X:f,Y] = [X,f.Y]. (5)

In view of (2), , f.X : : g is unambigiously defined, The integration by parts formula

takes the form

XY = X.Y + X : : Y + [X,Y] . (6)

It is well known that for a semimartingle X, the equation

Z = I + X(O) + Z .X (7)

admits a unique solution. (See e.g. Emery (1978)). The solution Z to (7) is called

multiplicative stochastic integral II{I + dX), which we denote by e(X). For more
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information on multiplicative stochastic integral, see Emery (1978), Karandikar

(1981, 1982).

For a process Z, define Z by, Z (t) = Z(t-) for t > 0 and Z ~0) - I. The

equation (7) can be rewritten as

z=I+z .x (8)

From this it follows that Z = and hence a necessary condition for Z to be

Lo(d) valued is that (I+AX) be invertible. We show in the next result that the

condition is sufficient and obtain a formula for the inverse Z

For a process Y and a subset E of L(d), we say Y E E if

P(w : Y(t,w) 6 E for some t) = 0.

THEOREM 1: Let X be a semimartingale such that (I + 0394X) ~ Lo(d) and let Z = ~(X).

Then Z, Z- ~ Lo(d) and

[~(X)]-1 = [~(Y’)]’ (9)

where

Y = -X + X c ,X c > + S((I + ~X) 1 - I + 6X) (10)

proof: Let W = [E(Y’)]’. It follows that

W = I + Y . W - I + Y (0) + Y . W ’

Note that Xc,Yc~ _ - and that AY = (I + ~X)-1 - I. From this it is easy

to check that

x + Y + [X,Y] = 0 (11)

and that (I + 6X (0) ) (I + AY(0)) = I. Now by (6),

ZW = Z.W+Z : t W_+[Z,W]
= Z .Y : W +Z.X : t W +(I+~X(0))(I+~Y(0))+[Z .X,Y : t W ]
= Z .(Y+X+[X,Y]):W_ + I 

.

= I

using (11). This proves Z, L (d) and that Z = W. 
[1

REMARK: It has been pointed out to the author that this result has appeared in an

article by R.Leandre (Sem. Prob. XLX, p. 271). This result can be restated as :

if Z is a solution to

Z = I + Z .X,

then Z 1 is the unique solution to
W = I + Y : W

where Y is given by (10).

Let Mloc denote the class of local martingales (L(d) valued) and V denote the
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class of processes with bounded variation paths on bounded intervals.

For a semimartingale Z such that Z, Z- ~ Lo(d), let be defined by

l(Z) = (Z-)-1. (Z-I). (12)

Then clearly l(z) is also a semimartingale. The following result follows easily

from the definitions and well known properties of stochastic integrals.

THEOREM 2: Let Z be a semimartingale such that Z, Z- ~ Lo(d) and let X be a semi-
martingale such that I + 0394X ~ Lo(d). Then

(i) ~(l(Z)) = Z

(ii) = X

(iii) Z E M loc => Mloc
(iv) z E V’ ~=y .~(z) 4 ~,V

(v) X  Mloc 
(vi) X=;~’===> 

3. MULTIPLICATIVE DECOMPOSITION

In Karandikar (1982), it was proved that an Lo(d) valued continuous semi-

martingale Z admits a multiplicative decomposition Z = NB, into a local martingale

N and B 6 V. This result for real valued case is proved in Ito-Watanabe (1965) and

Meyer (1967). For a complete discussion of the real valued case, see Jacod (1979).

Here we will show that a semimartingale Z with Z, Z- ~ Lo(d) admits a decompo-
sition Z = NB with N E M , B ~ V. Of course in general the decomposition is not

unique, just as additive decomposition is not unique. It will be proved that if

such a decomposition exists with B predictable, then such a decomposition is unique.

We will give a counter example to show that even if Z is a special semi-

martingale, it may not admit a decomposition Z = NB with B predictable (and

B e V ) .

The main tool in Karandikar (1982) was integration by parts formula for the

multiplicative integral. We need its analogue for rcll semimartingales, which we

obtain next.

THEOREM 3: Let X,Y be semimartingales such that

(I + 0394X) ~ Lo(d) and (I + 0394Y) ~ Lo(d).

Then

e(X+Y+[X,Y]) = E(W ,X : (W ) 1)6(Y) (13)

where W = e(Y).
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Proof: Let Z = e(W ,X : (W-) 1). Then by (6)

ZW = Z_.W+Z : W_+[Z,W]
= (z w-) .Y + (z-w ) .x : ( (vi ) 1~~~ )+(I+x(o) ) (I+Y (o) )

+;(Z-W ).[X : t (W ) 1,W .Y]
= 

(Z-W ~..Y+(Z-W-) .X:I.1 (gr~)+(I+X (o) ) (I+Y (0) )+Z W-. [X’I 
Using the fact that if U(0) = 0, U : 1(0I~) - u = it follows that

ZW = 

= (I+Y (O) )
= (Z-W-). (X+Y+[X,Y] )+I+X(0)+Y(0)+[X,Y] (o).

Hence .

ZW = e(X+Y+[X,Y]).
[]

The idea of obtaining multiplicative decomposition is as follows. Let Z be a

semimartingale with Z,Z E L o (d) and let X = .~(Z). If X can be written as

X = M + A + [M,A] (14)
with

M ~ (15)

(I + AA) e Lo (d) (16)

then (I+AX) = and hence Then by integration by part
formula, Z = NB, where B = e(A), N = c(B .M : (B ) 1) and by Theorem 3, B E ~’,
N Thus the whole thing reduces to obtaining a decomposition (14)satisfying
(15) and (16). We show that this can be done in the next result.

THEOREM 4: Let Z be a semimartingale such that Z, Z E L (d). Then Z admits a
o

decomposition

Z = NB (17)

where N E Mloc’ B E V.
Proof: Let X = ~(Z). For 0  a  ~ (fixed), let

Y = X - (18)

Then a and hence Y is a special semimartingale. Let Y = U + V be the

canonical decomposition of Y, with U(0) = 0, U E Mloc’ , V E V
Since U E M and U(0) = 0 one has ~(AU) = 0, (hence PD denotes predictable

projection of a process D) and hence AY = AV, since AV is predictable. Thus

|0394V| = |p0394Y| ~ p|0394Y| ~ a. (19)

This implies (I + AV) E L (d). Let

M = U : (I+~V) 1. .
This is well defined as (I + OV) 1 is a bounded predictable process and as a
consequence M E. Mloc’ M(0) = 0. Then
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U = M : :. 

= M + S(AMAV)

= M + ~~M,V] .

Thus Y = U + V = U + M + [M,V]. As a consequence

(I + AY) = (I + AM) (I + AV)

and hence (I + AM) E L (d) . Now
o

X=M+V+ [M,V] + S(AX 1~[~)) )
= M + W

where W E u. Define A E V by

A = W + S(~(I + ~M) 1-I} AW).
Then it is easy to check that [M,A] = W-A and hence that

M + A + [M,A] = M + W = X.

Here (I + 4M) E Lo(d) and since (I + ~X) E Lo(d), (I + 4A) E Lo(d) as well.

Then if

B = ~(A)

and

N = ~(B-.M : (B-)-1)
then by integration by points formula, NB = e(M + A + [M,A]) = e(X) and hence

z = NB. 
~

It can be easily seen that the decomposition Z = NB need not be unique unless

we require that B be predictable.

The questions then are (i) when does a decomposition Z = NB exist with B

predictable? (ii) If such a decomposition exists, is it unique?

These questions are answered in the next result.

It suffices to consider the case Z(0) = I for a given Z can be written as

Z(t) = Z(t). Z(0)

where Z(t) = Z(t).[Z(0)] 1.
For a process W, let denote the real valued process

= 0 ~ s ~ t}.

THEOREM 5: Let Z be a semimartingale such that Z(0) = I; Z- ~ Lo(d). Then Z admits

a decomposition

Z = NB

with

N 6 Mloc’N(0) = I, B e ~ and B predictable (20)

if and only if

[z)* is locally integrable (21)

and

PZ e Lo (d) . (22)
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Finally, if (20), (21) hold then the decomposition (18) satisfying (19) is unique.

Proof : Suppose the decomposition (18) exists with N, B satisfying (19). . Then

INi* is locally integrable and is locally bounded since B is predictable.. Thus

is locally integrable. . Also, , (18) ) implies that N, , N , B, , B- E L (d). . So let

U = .~ (N ) , , V = l(B) and M = (B ) 1. U : : B so that

N = e(U) = e(B . M : : (B) ) . .
Then by integration by parts formula, 

’

Z = e(M + V + [M,V]) )

and thus

(Z ) 1Z = (I + DM + DV + 

= (I + AM) (I + .

Now (19) implies that = 0, and V is predictable. Taking

predictable projection on both sides in (22) and using that Z ,AV are predictable

and p AM = 0 one gets
(Z ) 1 (PZ) - (I + AV) 

’

which yields

PZ = (Z ) (I+DV) . .

Since Z- ~ Lo (d) and (I + 0394V) = (B-)-1B ~ Lo (d) as observed above, this yield (21).

Conversely suppose (20), (21) hold., Then (20) implies that Z is a special

semimartingale and this X = is also a special semimartingle. Let X = U + V be

the canonical decomposition of X with U E M ,U(0) = 0, , V predictable. Then

= (I + AX)

= (I + AU + AV)

and thus taking predictable projection, one gets

(Z*)"~- 1 P (Z) - (I + AV)
and hence that (I + L 

o 
(d) in view of (21). . Now defining M = U : : (I + DV) 1, ,

one has M ~ Mloc and that
M + V + [M,V] = U + V = X

as in the proof of Theorem 4. This yields

Z = e(X) = e(M + V + [M,V]) )

= NB

with B = e:(V) ) and N = ~(B .M : ; (B ) 1). , Clearly N,B satisfy (19). .

Remains to prove that if (20), (21) hold, then the decomposition is unique

subject to (19) . ° Let Z = = N2B2 where Ni,Bi satisfy (19). ’ (Here the suffix

1,2 does not represent component). . Let U. _ ~(N.)~ , V~ = and M. _ (B ) ,

Ui. (B-i). Then it follows that for i = 1,2,

Z = ~(Mi + Vi + [Mi,Vi])
for i = 1,2. . Thus
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x = ~~(z) = M. + v. + (M. ,v. ]

with Vi predictable, Mi E M l~i ~0) = 0. It follows that 

and [Mi,Vi](0) = 0. Thus defining Wi = Mi + [Mi,Vi], one gets

X = Wi+Vi (23)
1 1

with Wi E Mloc’ , Wi(0) = 0. The uniqueness of additive decomposition (23) yields

V1 = V , 2 which in turn implies B1 
= B2 as Bi = s(Vi). Since Bi 6 Lo(d), this clearly

implies N1 
= N2 as well completing the proof. ~

We will now give an example to show that (20) does not imply (21). This shows

that (20) is not sufficient to guarantee the decomposition (18) - (19). Indeed, this

example is for the case d = 1.

Let Q = {1, -1}, A = P(Q), P({1}) - P(~-1}) _ i, and n(w) for Let

= {~} for t  1 and F t = for t ~ 1. Let

= i(0~1)(t) + nl(i~~) (t). {24)

Clearly Z is a bounded semimartingale and Z(t). ~ 0 for all t. However, (’Z)(t) -

1(0I1) (t) + pl(1~~) (~t) and thus (PZ) (1) = 0.
The above example shows that a special semimartingale need not admit a

decomposition (18) with B-predicable.
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