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1. INTRODUCTION

It was shown in Karandikar (1982) that a continuous semimartingale 2 with values

in the space of dxd nonsingular matrices admits a multiplicative decomposition
Z = NB

where N is a continuous local martingale and B is a continuous process of locally
bounded variation. We extend this result to general semimartingales Z. In general,
the decomposition is not unique. Conditions are given under which a decomposition
with B predictable exists, and it is shwon that under these conditions, the decompo-
sition is unique. An example is given of a bounded semimartingale Z which does not

admit a decomposition with B predictable.

We obtain a formula for inverse of a multiplicative integral and also integra-
tion by parts formula for multiplicative stochastic integration, which like in
Karandikar (1982) is the main tool of this paper. For multiplicative decomposition

of real valued semimartingales, see Ito-Watanabe (1965), Meyer (1967), Jacod (1979).

2. PRELIMINARIES

Let (Q,F,P) be a fixed complete probability space, and F = KFt) be a filtration
satisfying usual hypothesis. All processes we consider are (Ft)-adapted . For an
integer 4, L(d) will denote the set of all dxd matrices and Lo(d) will denote the
set of all invertible elements of L(d). For A L(d), IA[ will denote the Hillbert-
Schmidt norm of A.

An L(d) valued process X = (Xij) is said to be a semimartingale if each of its
components Xij is a semimartingale. For a rcll (cadlag) process X, X_ denotes the
process : X (t) = X(t-) for t > 0 and X_(0) = 0. Here, X(t-) denotes the left limit
at t.

For an L(d) valued locally bounded predictable process. f and an L(d) valued
semimartingale X, the stochastic integral f fdx, which we denote by £. X is defined
by

X).. = LdX L.
(%) 5 Ejflk%
Also the integral X :f is defined by X : £ = (£'.X')', where A' denotes transpose

of A. Clearly
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(X & ), =z f £ 5%

For L(d) - valued semimartingales X,Y, let
X ia = . .
[X,¥] 5 E EI
and for continuous semimartingales X,Y (or Lz—local martingales X,Y), let !

<, > = < >.
X,Y z i Y5

. ; c : . . .
For a semimartingale X = (xij), X denotes its continuous martingale part defined
componentwise by

c _ c
(x )ij = (Xij) .

For a process X, S(X) will denote the process

I x(s) if ¥ [x(s)] <=

SIX) = ple<t O<s<t

0 otherwise.

For a rcll process X, the process AX is defined by
AX=X~X_.
It is well known that if X,Y are semimartingales, (real valued) then

1 Istas)| [sx(s)| <= a.s., (1)
s<t
and the same can be seen to hold for L(d) valued semimartingales. It follows as in

real valued case that for L(d) valued semimartingales X,Y,
c c
[X,Y] = <X7, Y > + S(AXAY). (2)

From now on, all processes we consider one L(d) valued. For semimartingales X,Y and

locally bounded predictable processes f,g, the following identities are easy to

verify
(£.X) : g =£.(X : g) (3)
[£.X,Y:9] = £.[X,Y]:g (4)
[x:£,Y] = [X,£.¥]. (5)

In view of (2), £.X : g is unambigiously defined. The integration by parts formula

takes the form

XY =X .Y +X:Y + [XY]. (6)
It is well known that for a semimartingle X, the equation

2 =1+ X(0) + 2_.X (7)

admits a unique solution. (See e.g. Emery (1978)). The solution Z to (7) is called

multiplicative stochastic integral II(I + dX), which we denote by e€(X). For more
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information on multiplicative stochastic integral, see Emery (1978), Karandikar

(1981, 1982).

For a process %, define Z by, Z (t) = Z(t-) for t > 0 and Z (0) = I. The

equation (7) can be rewritten as
Z=1+72 .X (8)

From this it follows that 2 = Z (I+AX) and hence a necessary condition for % to be
Lo(d) valued is that (I+AX) be invertible. We show in the next result that the

condition is sufficient and obtain a formula for the inverse Z_l.
For a process Y and a subset E of L(d), we say Y € E if
P(w : Y(t,w) € E for some t) = O.

THEOREM 1: Let X be a semimartingale such that (I + AX) € Lo(d) and let Z = €(X).

Then Z, 2 e L (d) and

fe) 1™t = [e(¥)) (9)

where
c _C -1

Y = =X + <X ,X >+ S((I + AX) - I + AX) (10)
Proof: Let W= [e(Y')]'. It follows that

W=I+Y:W =I+Y(0)+Y:W

c _C c _C -1 c o sa s
Note that <X ,Y » = - <X ,X > and that AY = (I + AX) - I. From this it is easy
to check that

X+Y+ [X,Y] =0 (11)

and that (I + AX(0))(I + AY(0)) = I. Now by (6),

ZW = Z_.W+Z : W_+[Z,W]
Z_.Y : W_+Z_.X : W_+(I+AX(O))(I+AY(0))+[Z_.X,Y : W_]

Z_.(Y+X+[X,Y]):W_ + I
=1
-1
using (11). This proves Z, Z2 € Lo(d) and that 2 = W.
h ]
REMARK: It has been pointed out to the author that this result has appeared in an
article by R.Leandre (Sem. Prob. XLX, p. 271). This result can be restated as :

if Z is a solution to
Z=1I+ 32 .X,

then Z_1 is the unique solution to
W=I+Y:W

where Y is given by (10).

Let M1 denote the class of local martingales (L(d) valued) and V denote the
oc
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class of processes with bounded variation paths on bounded intervals.

For a semimartingale Z such that 2, z € Lo(d), let £(2) be defined by

Lz = )7t (z-D). (12)

Then clearly £(Z) is also a semimartingale. The following result follows easily

from the definitions and well known properties of stochastic integrals.

THEOREM 2: Let Z be a semimartingale such that Z, z € Lo(d) and let X be a semi-
martingale such that I + AX ¢ Lo(d). Then

]

(1) efl{z)) =2

(ii) L(e(x))

X
(iii) z € Mloc <=> £(2) eMloc
(iv) 2z € V<=>£(2z) ¢V

v) X eé€ Mloc <==> g(X) & Mloc

(vi) X € V <=> e(X) eV'.

3. MULTIPLICATIVE DECOMPOSITION

In Karandikar (1982), it was proved that an Lo(d) valued continuous semi-
martingale Z admits a multiplicative decomposition Z = NB, into a local martingale
N and B € V. This result for real valued case is proved in Ito-Watanabe (1965) and

Meyer (1967). For a complete discussion of the real valued case, see Jacod (1979).

Here we will show that a semimartingale Z with Z, Z € Lo(d) admits a decompo-
sition Z = NB with N € Mloc’ B € V. Of course in general the decomposition is not
unique, just as additive decomposition is not unique. It will be proved that if

such a decomposition exists with B predictable, then such a decomposition is unique.
We will give a counter example to show that even if Z is a special semi-
martingale, it may not admit a decomposition Z = NB with B predictable (and
B eV).
NeMloc, el)
The main tool in Karandikar (1982) was integration by parts formula for the
multiplicative integral. We need its analogue for rcll semimartingales, which we

obtain next.
THEOREM 3: Let X,Y be semimartingales such that

(I +8X) € L (d) and (I + &¥) €L (d).
Then
C(XHYHIX,Y]) = e(W.X ¢ (W) D)e(y) (13)

where W = €(Y).
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Proof: TLet Z = e(W .X : (W) Y). Then by (6)

ZW = Z_.WHZ : W_+[Z,W]

]

(Z_W_).Y + (ZW).X : ((w')'lw_)+(1+x(0))(1+y(0))
+Z W)X s W) hw Ly

(Z_ W) y+(Z W ).X:I.1

(0, (THR(0)) (T4Y(0))42 W_.[X,T 1 o, .¥].

Using the fact that if U(0) = 0, U : 1(0 ) =U = 1(0 w).U, it follows that
ZW = (z_w_).Y+(z_w_).x+(z_w_)1(0 m).[X,Y]+(I+X(0))(I+Y(0))
= (Z_W_) . (X+Y+[X,Y] )+ (I+X(0)) (I+Y (0))
= (Z_W_).(X+Y+[X,Y])+I+X(0)+Y (0)+[X,¥] (0).
Hence

ZW = e(X+Y+[X,Y]).
a1

The idea of obtaining multiplicative decomposition is as follows. Let Z be a

semimartingale with Z,Z-e Lo(d) and let X = £(2). If X can be written as

X =M+ A + [M,A] (14)
with

M€ Mloc, A€V (15)

(I +0a) e L, (@) (16)

then (I+AX) = (I+AM)(I+AA) and hence (I+AM) € Lo(d) . Then by integration by part
formula, Z = NB, where B = e(A), N = e(B™.M : (87)"}) and by Theorem 3, B € ¢,

N € Mloc' Thus the whole thing reduces to obtaining a decomposition (14) satisfying
(15) and (16). We show that this can be done in the next result.

THEOREM 4: Let Z be a semimartingale such that Z, 2z~ € Lo(d). Then Z admits a

decomposition
Z = NB (17)
where N ¢ Mloc’ Bel.
Proof: Let X = £(2). For 0 < a < % (fixed), let
= - . 18
Y X S(AX l{lelia}) (18)

Then lAYI < a and hence Y is a special semimartingale. Let Y = U + V be the

canonical decomposition of Y, with U(0) = 0, U & Mloc' vevy

Since U € Mloc and U(0) = O one has P(AU) = 0, (hence PD denotes predictable

projection of a process D) and hence PAY = AV, since AV is predictable. Thus

|av] = |Fax| < Flay| < a. (19)
This implies (I + AV) € Lo(d)' Let

M=U: (I+av) L.
This is well defined as (I + AV)“1 is a bounded predictable process and as a

consequence M eMloc' M(0) = 0. Then
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M : (I + AV)
M + S(AMAV)

(=]
1]

M+ IM,V].

Thus Y = U+ V=U+ M+ [M,V]. As a consequence
(I + AY) = (I + AM) (I + AV)
and hence (I + AM) € Lo(d). Now
X =M+ V+ [MV] + S(AX 1(]“1:&1))
=M+ W
where W € v. Define A €l by
A=w+ s+ am oo} aw.
Then it is easy to check that [M,A] = W-A and hence that
M+A+ [MA] =M+ W= X.
Here (I + AM) € Lo(d) and since (I + AX) € Lo(d), (I + AA) € Lo(d) as well.
Then if
B = £(A)

and _ -
N=¢(B.M: (B) ")

then by integration by points formula, NB = €(M + A + [M,A]) = €(X) and hence
Z = NB.
0
It can be easily seen that the decomposition Z = NB need not be unique unless

we require that B be predictable.

The questions then are (i) when does a decomposition Z = NB exist with B

predictable? (ii) If such a decomposition exists, is it unique?

These questions are answered in the next result.

It suffices to consider the case Z(0) = I for a given Z can be written as

Z(t) = z(t). 2(0)

where Z(t) = z(t).[z(0)]1 L.

For a process W, let lwl* denote the real valued process
*
lwlt = sup{lzsl: 0 <s <t}

THEOREM 5: Let Z be a semimartingale such that 2(0) = I; 2~ € Lo(d). Then Z admits

a decomposition

Z = NB
with
N € MIOC,N(O) =1, B €l and B predictable (20)
if and only if
[Zl* is locally integrable (21)
and
P

Z e Lo(d). (22)
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Finally, if (20), (21) hold then the decomposition (18) satisfying (19) is unique.

Proof: Suppose the decomposition (18) exists with N, B satisfying (19). Then

lNl* is locally integrable and IBI* is locally bounded since B is predictable. Thus
lZl* is locally integrable. Also, (18) implies that N, N, B, B € Lo(d). So let
U=ALMN), Vv=4~L(B) and M = (B_)—l. U : B so that

N=¢e(=cB.nM: B)H.

Then by integration by parts formula,
Z=¢eM+ V + [MV])
and thus

(z)) 1z

(I + AM + AV + AMAV)
(I + AM) (I + AV).

Now (19) implies that M € Mloc'M(O) =0, V&l and V is predictable. Taking
predictable projection on both sides in (22) and using that Z ,AV are predictable
and PAM = 0 one gets

) 1 Pz) = (1 + A
which yields

Py = (27) (+av).

-1

Since Z2~ € Lo(d) and (I + AV) = (B) "B € Lo(d) as observed above, this yield (21).

Conversely suppose (20), (21) holds Then (20) implies that Z is a special
semimartingale and this X = £(2Z) is also a special semimartingle. Let X =U + V be
the canonical decomposition of X with U € Mloc,U(O) =0, VeV, V predictable. Then

z))" 2

1]

(I + AX)
(I + AU + AV)

and thus taking predictable projection/ one gets

@) Pz = @+
and hence that (I + AV) € Lo(d) in view of (21). Now defining M = U : (I + AV)_l,
one has M € Mloc and that

M+V+ [MV] =U0+V=X
as in the proof of Theorem 4. This yields

Z = ¢e(X) = M+ V + [M,V])

= NB

with B = €(V) and N = €(B™.M : (B7) }). Clearly N,B satisfy (19).

Remains to prove that if (20), (21) hold, then the decomposition is unique
subject to (19). Let z = NlBl = N2B2 where Ni'Bi satisfy (19). (Here the suffix
- -1
1,2 does not represent component). Let Ui = l(Ni), vi = K(Bi) and Mi = (Bi) B
;. (B;). Then it follows that for i =1,2,
Z = E(Mi + Vi + [Mi'vi])

for i = 1,2. Thus
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X = £(2) = M, o+ Y+ [Mi'vi]

with \A e, \A predictable, M, 3 Mloc' Mi(O) = 0. It follows that [Mi,Vil € Mloc
and [Mi,vi](o) = 0. Thus defining wi = Mi + [Mi,Vi], one gets
X = W, 4V, (23)
i i

with Wi € Mloc’ wi(O) = 0. The uniqueness of additive decomposition (23) yields
V1 = V2, which in turn implies B1 = B2 as Bi = e(Vi). Since Bi é Lo(d), this clearly
implies N1 = N2 as well completing the proof. 0

We will now give an example to show that (20) does not imply (21). This shows
that (20) is not sufficient to guarantee the decomposition (18) - (19). 1Indeed, this

example is for the case d = 1.

Let @ = {1, -1}, A = P(Q), p({1}) = p({-1}) = %, and n(w) for w € Q. Let
E = 16,0} for t <1 and F =P(Q) for t > 1. Let

zZ(t) = (t) +nl (t). (24)

1
[0,1) [1,°)
Clearly Z is a bounded semimartingale and Z(t) # O for all t. However, (RZ)(t) =
P
1 t) + nl t) and thus z) (1) = O.
(0,1) (&) + Nl o (8) ¢z)(1)
The above example shows that a special semimartingale need not admit a

decomposition (18) with B-predicable.
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