@article{SPS_1991__25__311_0, author = {Weber, Michel}, title = {New sufficient conditions for the law of the iterated logarithm in {Banach} spaces}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {311--315}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {25}, year = {1991}, mrnumber = {1187788}, zbl = {0744.60009}, language = {fr}, url = {http://archive.numdam.org/item/SPS_1991__25__311_0/} }
TY - JOUR AU - Weber, Michel TI - New sufficient conditions for the law of the iterated logarithm in Banach spaces JO - Séminaire de probabilités de Strasbourg PY - 1991 SP - 311 EP - 315 VL - 25 PB - Springer - Lecture Notes in Mathematics UR - http://archive.numdam.org/item/SPS_1991__25__311_0/ LA - fr ID - SPS_1991__25__311_0 ER -
%0 Journal Article %A Weber, Michel %T New sufficient conditions for the law of the iterated logarithm in Banach spaces %J Séminaire de probabilités de Strasbourg %D 1991 %P 311-315 %V 25 %I Springer - Lecture Notes in Mathematics %U http://archive.numdam.org/item/SPS_1991__25__311_0/ %G fr %F SPS_1991__25__311_0
Weber, Michel. New sufficient conditions for the law of the iterated logarithm in Banach spaces. Séminaire de probabilités de Strasbourg, Tome 25 (1991), pp. 311-315. http://archive.numdam.org/item/SPS_1991__25__311_0/
[1] A real variable lemma and the continuity of paths of Gaussian processes, Indiana U. Math. J.V., 20, 565-578, (1970). | MR | Zbl
, , ,[2] Convex functions and Orlicz spaces, Dehli Pub. Hindustan Corp. (1962).
, ,[3] Characterization of the law of the iterated logarithm in Banach spaces, Ann. Prob. 16, 1242-1264, (1988). | MR | Zbl
, ,[4] Characterizations of almost surely continuous p-stable random Fourier series and strongly stationary processes, Act. Math., 152, 245-301. | MR | Zbl
, ,[5] Étude de la régularité des fonctions aléatoires et de leurs propriétés limites, Sem. de Prob. XII, Lect. Notee in Math. 649, 567-690, (1977). | EuDML | Numdam | MR | Zbl
, ,[6] The law of the iterated logarithm for subsequences in Banach spaces, Prob. in Banach spaces VII, Progress in Prob. 2.1, p. 269-288, Birkhaüser, (1990). | MR | Zbl
,